SINAMICS G120D 分布式变频器
带编码器检测的控制单元CU240D-2和CU250D-2

入门指南

版本 04/2014

Answers for industry.
法律资讯

警告提示系统

为了您的人身安全以及避免财产损失，必须注意本手册中的提示。人身安全的提示用一个警告三角表示，仅与财产损失有关的提示不带警告三角。警告提示根据危险等级由高到低如下表示。

<table>
<thead>
<tr>
<th>危险</th>
<th>表示如果不采取相应的小心措施，将会导致死亡或者严重的人身伤害。</th>
</tr>
</thead>
<tbody>
<tr>
<td>警告</td>
<td>表示如果不采取相应的小心措施，可能导致死亡或者严重的人身伤害。</td>
</tr>
<tr>
<td>小心</td>
<td>表示如果不采取相应的小心措施，可能导致轻微的人身伤害。</td>
</tr>
<tr>
<td>注意</td>
<td>表示如果不采取相应的小心措施，可能导致财产损失。</td>
</tr>
</tbody>
</table>

当出现多个危险等级的情况下，每次总是使用最高等级的警告提示。如果在某个警告提示中带有警告可能导致人身伤害的警告三角，则可能在该警告提示中另外还附带有可能导致财产损失的警告。

合格的专业人员

本文件所属的产品/系统只允许由符合各项工作要求的合格人员进行操作。其操作必须遵照各自附带的文件说明，特别是其中的安全及警告提示。由于具备相关培训及经验，合格人员可以察觉本产品/系统的风险，并避免可能的危险。

按规定使用Siemens 产品

请注意下列说明：

<table>
<thead>
<tr>
<th>警告</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siemens 产品只允许用于目录和相关技术文件中规定的使用情况。如果要使用其他公司的产品和组件，必须得到Siemens 推荐和允许。正确的运输、储存、组装、装配、安装、调试、操作和维护是产品安全、正常运作的前提。必须保证允许的环境条件。必须注意相关文件中的提示。</td>
</tr>
</tbody>
</table>

商标

所有带有标记符号 ® 的都是西门子股份有限公司的注册商标。本印刷品中的其他符号可能是一些其他商标。若第三方出于自身目的使用这些商标，将侵害其所有者的权利。

责任免除

我们已对印刷品中所述内容与硬件和软件的一致性作过检查。然而不排除存在偏差的可能性，因此我们不保证印刷品中所述内容与硬件和软件完全一致。印刷品中的数据都按规定经过检测，必要的修正值包含在下一版本中。
目录

1 基本安全说明 ... 7
1.1 一般安全说明 ... 7
1.2 有关电磁场 (EMF) 的安全说明 .. 11
1.3 操作静电敏感元件 (ESD) ... 11
1.4 工业安全 ... 12
1.5 驱动系统（电气传动系统）的遗留风险 ... 13

2 前言 ... 15
2.1 SINAMICS G120D 变频器 ... 15
2.2 调试工具 ... 17

3 安装 ... 19
3.1 将控制单元装配至功率模块 ... 19
3.2 SINAMICS G120D 的钻孔图 .. 20
3.3 接口一览 ... 22
3.4 电气数据 ... 23
3.5 电磁兼容基本规定 ... 24
3.6 接口和电缆 ... 26
3.7 输入/输出端的预设置 ... 40
3.8 通过 DIP 开关设置 PROFIBUS 地址 .. 43
3.9 连接 PROFINET 接口 ... 44
3.10 变频器和电机接地 ... 45
3.11 接线端子和抗干扰措施 ... 47
3.12 等电位连接 ... 47

4 调试 ... 49
4.1 SINAMICS G120D 默认设置 .. 49
4.2 通过 IOP 调试变频器 .. 50
4.3 调试应用程序 ... 55
4.4 恢复出厂设置 ... 56

5 故障排查 .. 57
5.1 故障和警告列表 ... 57
5.2 状态 LED 一览 ... 65
5.3 其他信息 ... 68
目录

本书宗旨
本入门指南将向您介绍如何安装变频器以及如何使用操作面板IOP进行调试和操作。
IOP的功能和特性在SINAMICS IOP操作说明中详尽描述，本书在此仅作简要说明。

关于SINAMICS G120的详细信息
变频器的所有手册都可在线下载并另行提供了DVD光盘。另见章节：其他信息 (页 68)。

本手册中的符号有什么含义？

操作说明从这里开始。
操作说明到这里结束。

固件升级和降级
关于固件升级和降级的方法和步骤请访问网址http://support.automation.siemens.com/WW/news/de/67364620。

将开源软件代码的授权条件传送到 PC 上

步骤
按如下步骤将一台变频器的OSS授权条件传送给PC：

1. 切断变频器的电源。
2. 将空存储卡插入到变频器的卡槽内。另见章节：接口一览 (页 22)。
3. 接通变频器的电源。
4. 电源接通后等待 30 秒。
 变频器在该时间内向将文件“Read_OSS.ZIP”写入存储卡。
5. 切断变频器的电源。
6. 从变频器上拔出存储卡。
7. 将文件通过读卡器载入到 PC 中。

现在，您已经将 OSS 授权条件从变频器传送到 PC。
基本安全说明

1.1 一般安全说明

警告

连接了不合适的电源所产生的危险电压可引发生命危险
接触带电部件可能会造成人员重伤或死亡。
- 所有的连接和端子只允许使用可以提供 SELV(Safety Extra Low Voltage: 安全低压) 或 PELV(Protective Extra Low Voltage: 保护低压) 输出电压的电源。

危险

接触带电部件和其他能源供给会引发生命危险
接触带电部件会造成人员重伤，甚至死亡。
- 只有专业人员才允许在电气设备上作业。
- 在所有作业中必须遵守本国的安全规定。
通常有六项安全步骤：
1. 做好断电的准备工作，并通知会受断电影响的组员。
2. 断开设备电源。
 - 关闭设备。
 - 请等待至警告牌上说明的放电时间届满。
 - 确认导线与导线之间和导线与接地线之间无电压。
 - 确认辅助电压回路已断电。
 - 确认电机无法运动。
3. 检查其他所有危险的能源供给，例如：压缩空气、液压、水。
4. 断开所有危险的能源供给，措施比如有：闭合开关、接地或短接或闭合阀门。
5. 确定能源供给不会自动接通。
6. 确保正确的设备已经完全闭锁。
结束作业后以相反的顺序恢复设备的就绪状态。
基本安全说明

1.1 一般安全说明

<table>
<thead>
<tr>
<th>警告</th>
</tr>
</thead>
<tbody>
<tr>
<td>接触损坏设备上的带电压部件可引发生命危险</td>
</tr>
<tr>
<td>未按规定操作设备可能会对其造成损坏。</td>
</tr>
<tr>
<td>设备损坏后，其外壳或裸露部件可能会带有危险电压，接触外壳或这些裸露部件可能会导致重伤或死亡。</td>
</tr>
<tr>
<td>• 在运输、存放和运行设备时应遵循技术数据中给定的限值。</td>
</tr>
<tr>
<td>• 不要使用已损坏的设备。</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>警告</th>
</tr>
</thead>
<tbody>
<tr>
<td>电缆屏蔽层未接地可引起电击从而导致生命危险</td>
</tr>
<tr>
<td>电缆屏蔽层未接地时，电容超临界耦合可能会出现致命的接触电压。</td>
</tr>
<tr>
<td>• 电缆屏蔽层和未使用的功率电缆芯线（如抱闸芯线）至少有一侧通过接地的外壳接地。</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>警告</th>
</tr>
</thead>
<tbody>
<tr>
<td>未接地可引起电击从而导致生命危险</td>
</tr>
<tr>
<td>防护等级Ⅰ的设备缺少安全接地连接或连接出错时，在其裸露的部件上会留有高压，接触该部件会导致重伤或死亡。</td>
</tr>
<tr>
<td>• 按照规定对设备进行接地。</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>警告</th>
</tr>
</thead>
<tbody>
<tr>
<td>运行时断开插接可引起电击从而导致生命危险</td>
</tr>
<tr>
<td>运行时断开插接所产生的电弧可引起重伤或死亡。</td>
</tr>
<tr>
<td>• 如果没有明确说明可以在运行时断开插接，则只能在断电时才能断开连接。</td>
</tr>
</tbody>
</table>
基本安全说明

1.1 一般安全说明

警告

外壳大小空间不足可引起火灾从而导致生命危险
明火和烟雾可引起重大人员伤亡或财产损失。
- 没有保护外壳的设备应安装在金属机柜中（或采取相同效果的措施进行保护），以避免设备接触明火。
- 确保烟雾只能经所设安全通道排出。

警告

使用移动无线电装置或移动电话的意外运动可引发生命危险
在距离本组件大约 2 m 的范围内使用发射功率大于 1 W 的移动无线电设备或移动电话时，会导致设备功能故障，该故障会对设备功能安全产生影响并能导致人员伤亡或财产损失。
- 关闭设备附近的无线电设备或移动电话。

警告

绝缘过载可引起火灾从而导致生命危险
在 IT 电网中接地会使电机绝缘增加负荷。绝缘失效可产生烟雾，引发火灾，从而造成严重人身伤害或死亡。
- 使用可以报告绝缘故障的监控设备。
- 尽快消除故障，以避免电机绝缘过载。

警告

通风不足可引起过热、引发火灾，从而导致生命危险
通风空间不足会导致过热，产生烟雾，引发火灾，从而造成人身伤害。
这可能会造成人员重伤或死亡。此外，设备/系统故障率可能会因此升高，使用寿命缩短。
- 组件之间应保持规定的最小间距，以便通风。
安全说明

1.1 一般安全说明

警告

缺少警示牌或警示牌不清晰可导致事故
缺少警示牌或警示牌不清晰可能会导致严重人身伤害或死亡。
- 根据文档检查警示牌的完整性。
- 为组件安装警示牌，必要时安装本国语言的警示牌。
- 替换掉不清晰的警示牌。

注意

不符合规定的电压/绝缘检测可损坏设备
不符合规定的电压/绝缘检测可导致设备损坏。
- 进行机器/设备的电压/绝缘检测前应先断开设备，因为所有的变频器和电机在出厂时都已进行过高压检测，所以无需在机器/设备内再次进行检测。

警告

无效的安全功能可导致生命危险
无效的或不适合的安全功能可引起机器功能故障，可能导致重伤或死亡。
- 调试前请注意相关产品文档中的信息。
- 对整个系统和所有安全相关的组件进行安全监控，以确保安全功能。
- 进行适当设置，以确保所使用的安全功能是与驱动任务和自动化任务相匹配并激活的。
- 执行功能测试。
- 在确保了机器的安全功能能正常工作后，才开始投入生产。

说明

Safety Integrated 功能的重要安全说明
使用 Safety Integrated 功能时务必要注意 Safety Integrated 手册中的安全说明。
1.2 有关电磁场 (EMF) 的安全说明

<table>
<thead>
<tr>
<th>警告</th>
</tr>
</thead>
<tbody>
<tr>
<td>电磁场可引发生命危险</td>
</tr>
<tr>
<td>在电气能源技术设备例如变压器、变频器、电机运行时会产生电磁场 (EMF)。因此可能会对设备/系统附近的人，特别是对那些带有心脏起搏器或医疗植入体等器械的人员造成危险。</td>
</tr>
<tr>
<td>• 确保相关人员和设备保持一定的距离（至少为 2 m）。</td>
</tr>
</tbody>
</table>

1.3 操作静电敏感元器件 (ESD)

静电敏感元器件 (ESD) 是可被静电场或静电放电损坏的元器件、集成电路、电路板或设备。

<table>
<thead>
<tr>
<th>注意</th>
</tr>
</thead>
<tbody>
<tr>
<td>电场或静电放电可损坏设备</td>
</tr>
<tr>
<td>电场或静电放电可能会损坏单个元件、集成电路、模块或设备，从而导致功能故障。</td>
</tr>
<tr>
<td>• 仅允许使用原始产品包装或其他合适的包装材料（例如：导电的泡沫橡胶或铝箔）包装、存储、运输和发运电子元件、模块和设备。</td>
</tr>
<tr>
<td>• 只有采取了以下接地措施之一，才允许接触元件、模块和设备：</td>
</tr>
<tr>
<td>– 佩戴防静电腕带</td>
</tr>
<tr>
<td>– 在带有导电地板的防静电区域中穿着防静电鞋或配带防静电接地带</td>
</tr>
<tr>
<td>• 电子元件、模块或设备只能放置在导电性的垫板上（带防静电垫板的工作台、导电的防静电泡沫材料、防静电包装袋、防静电运输容器）。</td>
</tr>
</tbody>
</table>
1.4 工业安全

说明

工业安全
西门子为其产品及解决方案提供工业安全功能，以支持工厂、解决方案、机器、设备和/或网络的安全运行。这些功能是整个工业安全机制的重要组成部分。

有鉴于此，西门子不断对产品和解决方案进行开发和完善。西门子强烈建议您定期了解产品更新和升级信息。

此外，要确保西门子产品和解决方案的安全操作，还须采取适当的预防措施（例如：设备单元保护机制），并将每个组件纳入先进且全面的工业安全保护机制中。

可能使用的所有第三方产品须一并考虑。更多有关工业安全的信息，请访问网址（http://www.siemens.com/industrialsecurity）。

要及时了解有关产品的更新和升级信息，请订阅相关产品的时事通讯。

更多信息请访问网址（http://support.automation.siemens.com）。

警告

篡改软件会引起不安全的驱动状态而导致危险
篡改软件（如：病毒、木马、蠕虫、恶意软件）可使设备处于不安全的运行状态，从而可能导致死亡、重伤和财产损失。

- 请使用最新版软件。

 相关信息和新闻请访问网址（http://support.automation.siemens.com）。
- 根据当前技术版本，将自动化组件和驱动组件整合至设备或机器的整体工业安全机制中。

 更多相关信息请访问网址（http://www.siemens.com/industrialsecurity）。
- 在整体工业安全机制中要注意所有使用的产品。
基本安全说明

1.5 驱动系统（电气传动系统）的遗留风险

驱动系统的控制组件和传动组件允许用于工业电网内的工业和商业场合。
在民用电网中使用时，要求采取特殊设计或附加措施。

这种组件只允许在封闭的壳体或控制柜内运行，并且必须安装保护装置和保护盖。

只有经过培训、了解并遵循组件和用户手册上指出的所有安全注意事项的专业技术人员，
才可以在组件上开展工作。

机器制造商在依据相应的本地指令（比如：欧盟机械指令）对机器进行风险评估时，必须
注意驱动系统的控制组件和驱动组件会产生以下遗留风险：

1. 调试、运行、维护和维修设备时，被驱动的机器部件意外运行，原因可能有：
 - 编码器、控制器、执行器和连接器中出现了硬件故障和/或软件故障
 - 控制器和传动设备的响应时间
 - 运行和/或环境条件不符合规定
 - 凝露/导电杂质
 - 参数设置、编程、布线和安装出错
 - 在控制器附近使用无线电装置/移动电话
 - 外部影响/损坏

2. 在出现故障时，变频器内外部出现异常温度、明火以及异常亮光、噪音、杂质、气体
 等，原因可能有：
 - 零件失灵
 - 软件故障
 - 运行和/或环境条件不符合规定
 - 外部影响/损坏

防护等级为“开放式类型/IP20”的设备必须安装在金属机柜中（或采取相同效果的措施
进行保护），以避免变频器内外部接触明火。
3. 出现危险的接触电压，原因可能有:
 - 零件失灵
 - 静电充电感应
 - 静充电感应
 - 运行和/或环境条件不符合规定
 - 凝露/导电杂质
 - 外部影响/损坏

4. 设备运行中产生的电场、磁场和电磁场可能会损坏近距离的心脏起搏器支架、医疗植入体或其它金属物。

5. 当不按照规定操作以及/或违规处理废弃组件时，会释放破坏环境的物质并且产生辐射。

说明
必须采取措施防止导电异物进入各组件，例如：将组件装入符合 EN 60529 IP54
防护等级或符合 NEMA 12 的控制柜中。
如果安装地点排除了导电异物，则使用较低防护等级的控制柜。

其它有关驱动系统组件产生的遗留风险的信息见用户技术文档的相关章节。
2.1
SINAMICS G120D 变频器

概述

SINAMICS G120D 是用于控制三相电机转速的系列变频器。
变频器由控制单元和功率模块两部分组成。

表格 2-1
SINAMICS G120D 变频器的控制单元

<table>
<thead>
<tr>
<th>名称</th>
<th>订货号</th>
<th>编码器类型</th>
<th>现场总线</th>
</tr>
</thead>
<tbody>
<tr>
<td>CU240D-2 DP</td>
<td>6SL3544-0FB20-1PA0</td>
<td>HTL 编码器</td>
<td>PROFIBUS</td>
</tr>
<tr>
<td>CU240D-2 DP-F</td>
<td>6SL3544-0FB21-1PA0</td>
<td>HTL 编码器</td>
<td></td>
</tr>
<tr>
<td>CU250D-2 DP-F</td>
<td>6SL3546-0FB21-1PA0</td>
<td>SSI 绝对值编码器</td>
<td></td>
</tr>
<tr>
<td>CU240D-2 PN</td>
<td>6SL3544-0FB20-1FA0</td>
<td>HTL 编码器</td>
<td>PROFINET, EtherNet/IP</td>
</tr>
<tr>
<td>CU240D-2 PN-F</td>
<td>6SL3544-0FB21-1FA0</td>
<td>HTL 编码器</td>
<td></td>
</tr>
<tr>
<td>CU250D-2 PN-F</td>
<td>6SL3546-0FB21-1FA0</td>
<td>SSI 绝对值编码器</td>
<td></td>
</tr>
<tr>
<td>CU240D-2 PN-F PP</td>
<td>6SL3544-0FB21-1FB0</td>
<td>HTL 编码器</td>
<td></td>
</tr>
<tr>
<td>CU240D-2 PN-F FO</td>
<td>6SL3544-0FB21-1FC0</td>
<td>SSI 绝对值编码器</td>
<td></td>
</tr>
<tr>
<td>CU250D-2 PN-F PP</td>
<td>6SL3546-0FB21-1FB0</td>
<td>HTL 编码器</td>
<td></td>
</tr>
<tr>
<td>CU250D-2 PN-F FO</td>
<td>6SL3546-0FB21-1FC0</td>
<td>SSI 绝对值编码器</td>
<td></td>
</tr>
</tbody>
</table>
前言

2.1 SINAMICS G120D 变频器

表格 2-2 SINAMICS G120D 变频器的 PM250D 功率模块

<table>
<thead>
<tr>
<th>外形尺寸</th>
<th>额定输出电压</th>
<th>额定输出电流</th>
<th>订货号</th>
</tr>
</thead>
<tbody>
<tr>
<td>基于高过载（HO）</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FSA</td>
<td>0.75 kW</td>
<td>2.2 A</td>
<td>6SL3525-0PE17-5AA1</td>
</tr>
<tr>
<td></td>
<td>1.5 kW</td>
<td>4.1 A</td>
<td>6SL3525-0PE21-5AA1</td>
</tr>
<tr>
<td>FSB</td>
<td>3.0 kW</td>
<td>7.7 A</td>
<td>6SL3525-0PE23-0AA1</td>
</tr>
<tr>
<td>FSC</td>
<td>4.0 kW</td>
<td>10.2 A</td>
<td>6SL3525-0PE24-0AA1</td>
</tr>
<tr>
<td></td>
<td>5.5 kW</td>
<td>13.2 A</td>
<td>6SL3525-0PE25-5AA1</td>
</tr>
<tr>
<td></td>
<td>7.5 kW</td>
<td>19.0 A</td>
<td>6SL3525-0PE27-5AA1</td>
</tr>
</tbody>
</table>
2.2 调试工具

变频器 SINAMICS G120D，配备控制单元 CU240D-2 和 CU250D-2
入门指南, 04/2014, FW V4.7, A5E34262374F AA 17
2.2 调试工具

调试工具：PC 或 IOP 手持套件

表格 2-3 用于调试的组件和工具

<table>
<thead>
<tr>
<th>组件或工具</th>
<th>订货号</th>
</tr>
</thead>
<tbody>
<tr>
<td>操作面板</td>
<td>IOP 手持单元 6SL3255-0AA00-4HA0</td>
</tr>
<tr>
<td>PC 连接包</td>
<td>含 USB 电缆 (3 m) 6SL3255-0AA00-2CA0</td>
</tr>
</tbody>
</table>
3

3.1 将控制单元装配至功率模块

将控制单元装配至功率模块

变频器是以两个单独的组件：功率模块（PM）和控制单元（CU）发货的。在进行调试前必须将控制单元装配至功率模块。

小心

正确装配密封圈

装配功率模块和控制单元时必须确保所有密封圈正确安装，以保证达到 IP65 防护等级。

TN 和 TT 电源

集成了 A 类电源滤波器的 SINAMICS PM250D 功率模块只适合在 TN 和 TT 电源上运行。

根据下图将控制单元装配到功率模块上。
3.2 SINAMICS G120D 的钻孔图

尺寸与钻孔图

变频器所有外形尺寸的钻孔图都是一样的。下图中展示了钻孔图、钻孔深度和紧固扭矩。

![SINAMICS G120D 钻孔图](image)

图 3-2 SINAMICS G120D 钻孔图

SIEMENS G1200 外形尺寸 FSA、FSB 和 FSC

- FSA 的深度：110 mm
- FSB 的深度：180 mm
- FSC 的深度：220 mm

CE2400-2 PP 和 CE2500-2 的深度：188 mm

固定方式
- 4 个 M5 螺钉
- 4 个 M5 螺母
- 4 个 M5 垫片

紧固扭矩：2.5 Nm，带垫片

尺寸：
- Ø 7.0 ± 0.5 mm
- 425 mm
- 1561 mm
安装
3.2 SINAMICS G120D 的钻孔图

安装方向
请将变频器安装在桌面或墙面上。安装时要保持以下最小间距：

- 变频器两侧没有间距要求
- 变频器上方和下方 150 mm。

图 3-3 安装方向：正确(✓)，不允许(X)，在一定条件下允许(!)

垂直安装时的限制条件
当变频器垂直安装时，最大环境温度应为 40 °C。
此外还必须将变频器的输出电流降低为变频器额定电流的 80 %。
如果输出电流降容会影响使用，则必须使用更高一级功率的变频器。
3.3 接口一览

变频器接口

图 3-4 不同型号变频器上的接口

① 带有状态 LED 的数字量输入端 0 … 5
② 现场总线输入和输出（PROFINET 或 PROFIBUS）
③ 24 V 直流电源输入和输出
④ 操作面板 IOP 手持设备的光学接口
⑤ 变频器状态 LED
⑥ USB
 PC 连接，PROFIBUS 地址和总线终端开关
⑦ 带有状态 LED 的数字量输出端 0 和 1
⑧ HTL 编码器接口
⑨ CU250D-2: SSI 编码器连接器
 CU240D-2: 模拟量输入端 0 和 1
⑩ 控制单元背面的存储卡槽
⑪ PROFINET 状态 LED
⑫ PE 接地端子
⑬ 主电源接口
⑭ 电机、抱闸和温度传感器接口
3.4 电气数据

功率模块 3 AC 380 V ... 500 V ± 10 % 的技术数据

表格 3-1 额定功率、输入电流、输出电流和熔断器

<table>
<thead>
<tr>
<th>产品</th>
<th>外形尺寸</th>
<th>额定功率</th>
<th>HO</th>
<th>熔断器</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>kW</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>6SL3525-...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0PE17-5AA1</td>
<td>A</td>
<td>0,75</td>
<td>2,2</td>
<td>2,1</td>
</tr>
<tr>
<td>0PE21-5AA1</td>
<td>A</td>
<td>1,5</td>
<td>4,1</td>
<td>3,8</td>
</tr>
<tr>
<td>0PE23-0AA1</td>
<td>B</td>
<td>3</td>
<td>7,7</td>
<td>7,2</td>
</tr>
<tr>
<td>0PE24-0AA1</td>
<td>C</td>
<td>4</td>
<td>10,2</td>
<td>9,5</td>
</tr>
<tr>
<td>0PE25-5AA1</td>
<td>C</td>
<td>5,5</td>
<td>13,2</td>
<td>12,2</td>
</tr>
<tr>
<td>0PE27-5AA1</td>
<td>C</td>
<td>7,5</td>
<td>19</td>
<td>17,7</td>
</tr>
</tbody>
</table>

待机电流

如果变频器接通，而电机仍然关闭，变频器就需要待机电流。

您必须在计算导线横截面积和选择必需的系统电源保护装置时考虑待机电流的因素。

表格 3-2 变频器的待机电流

<table>
<thead>
<tr>
<th>变频器</th>
<th>50 Hz</th>
<th>60 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>380 V</td>
<td>400 V</td>
</tr>
<tr>
<td>0.75 – 1.5 kW</td>
<td>0,6</td>
<td>0,63</td>
</tr>
<tr>
<td>3.0 – 4.0 kW</td>
<td>2,2</td>
<td>2,32</td>
</tr>
<tr>
<td>5.5 – 7.5 kW</td>
<td>2,9</td>
<td>3,05</td>
</tr>
</tbody>
</table>

关于待机电流的详细信息参见 FAQ:

3.5 电磁兼容基本规定

制动电压

180 V DC 制动电压适合于带有整流器的 400 V AC 拖动。

请拆除整流器模块并将变频器的制动输出直接连接在抱闸线圈上。

获得 UL 认证的抱闸端子的额定电流为 600 mA。

3.5 电磁兼容基本规定

电磁干扰(EMI)防范措施

下面为您列出了一些必要的电磁干扰防范措施，以便您将变频器正确安装到控制柜内，最大程度地降低电磁干扰。

电线和电缆

- 所有电缆应尽可能的短；避免多余的电缆长度。
- 信号电缆、数据电缆以及配套的等电位连接电缆应始终平行布线且相互之间应保持尽可能小的间距。
- 不要将信号电缆、数据电缆以及电源电缆与电机电缆平行布线。
- 信号电缆、数据电缆以及电源电缆最好不要与电机电缆交叉布线，如果不得不交叉，应以 90°直角交叉。
- 信号电缆和数据电缆应是屏蔽电缆。
- 特别灵敏的信号电缆（比如设定值或实际值的传输电缆）的屏蔽层必须在两端连续接地。
- 信号电缆和数据电缆的备用芯线应两端接地。
- 所有的功率电缆（电源电缆和电机电缆）与信号电缆和数据电缆应分开布线。布线间距至少是 25 厘米。
 例外：混合型电机电缆内部允许集成温度传感器屏蔽电缆和抱闸控制屏蔽电缆。
- 变频器和电机之间的功率电缆应是屏蔽电缆。建议使用由相同直径的三根交流导线 L1、L2、L3 和一根保护接地导线组成的屏蔽电缆。保护接地导线同样由相同直径的三根芯线组成。
电缆屏蔽层

- 应采用屏蔽层为细线编织的屏蔽电缆。薄膜屏蔽层的屏蔽效果最差，因此不适合使用。
- 屏蔽层应两端大面积搭接地机壳，以实现良好的电气接触。
- 电缆屏蔽层应连接到变频器的连接器上。
- 不要通过中间端子中断电缆屏蔽层。
- 无论是功率电缆，还是信号电缆和数据电缆，电缆屏蔽层都要使用合适的EMC屏蔽卡圈或金属电缆固定头固定。这些部件必须能够使电缆屏蔽层大面积接触电缆和设备机壳上配备的屏蔽件，实现良好的电气接触。
- 屏蔽数据电缆（如PROFIBUS电缆）只能连接到金属的或经过金属处理的的连接器外壳上。

注意

在不配套的电网 $u_k > 1\%$ 上运行会引起财产损失
在不配套的电网上运行变频器可能会导致变频器损坏或该电网上其它用电设备损坏。
- 仅在 $u_k \leq 1\%$ 的电网上运行变频器。
3.6 接口和电缆

危险

接触电机接线盒中的引脚可导致电击

温度传感器与电机抱闸的连接在直流母线的负电位上。接触电机接线盒中的引脚可能发生电击致死。

- 只要变频器接通电源，电机接线盒就必须关闭。
- 不使用的电缆应进行绝缘处理。
- 在电缆上应使用合适的绝缘装置。

注意

运行中断开电机可导致变频器损坏

运行中通过开关或接触器断开电机电缆的连接可导致变频器损坏。

- 只有在涉及人身安全或机床保护的特殊情况下，才能在运行中断开变频器和电机的连接。

连接器

“开关式”和“非开关式”的 24 V 电源

非开关式 24 V 电源(1L+)要求用于设备，使其正常运行。

开关式 24 V (2L+) 电源可提供两路数字量输出。

开关操作可使所有连接到数字量输出的执行器进入无电压状态。

如您无需对 2L+ 电源进行开关操作，那么开关式和非开关式 24 V 电源可以由同一个电源供电。
3.6 接口和电缆

变频器 SINAMICS G120D，配备控制单元 CU240D-2 和 CU250D-2

入门指南，04/2014，FW V4.7，A5E34262374F AA

接头布局根据变频器的俯视图。

<table>
<thead>
<tr>
<th>24 V 电源 IN</th>
<th>24 V 电源 OUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>X01.1 连接 0 V (2M)</td>
<td>X01.2 未连接 0 V (1M)</td>
</tr>
<tr>
<td>X01.3 零点接地</td>
<td>X01.4 未连接 +24 V (1L+)</td>
</tr>
<tr>
<td>X01.5 未连接 +24 V (2L+)</td>
<td>X02.1 2M</td>
</tr>
<tr>
<td>X02.2 1M</td>
<td>X02.3 零点接地</td>
</tr>
<tr>
<td>X02.4 1L+</td>
<td>X02.5 2L+</td>
</tr>
</tbody>
</table>

PROFIBUS DP IN
- X03.1 未连接
- X03.2 数据 A (N)
- X03.3 未连接
- X03.4 数据 B (P)
- X03.5 零点接地
- M12 - 5 芯连接器（插座）

PROFIBUS DP OUT
- X04.1 未连接
- X04.2 数据 A (N)
- X04.3 未连接
- X04.4 数据 B (P)
- X04.5 零点接地
- M12 - 5 芯连接器（插座）

24 V 最大 500 mA
- X05.1 未连接
- X05.2 数字量输出 1
- X05.3 2M
- X05.4 数字量输出 0
- X05.5 零点接地
- M12 - 5 芯连接器（插座）

HTL 编码器
- X06.1 1L+
- X06.2 通道 A
- X06.3 通道 A'
- X06.4 通道 B
- X06.5 通道 B'
- X06.6 通道 Z
- X06.7 通道 Z'
- X06.8 1M

- M12 - 8 芯连接器（插座）
- HTL 双绞，最多 20/48 增加，最大 100 mA

图 3-5 CU240D-2 PROFIBUS 连接器
安装

3.6 接口和电缆

图 3-6 CU240D-2 PROFINET 连接器
接口和电缆

变频器 SINAMICS G120D，配备控制单元 CU240D-2 和 CU250D-2

入门指南，04/2014, FW V4.7, A5E34262374F AA 29

图 3-7 CU240D-2 PROFINET 推挽连接器

<table>
<thead>
<tr>
<th>PROFINET 接口 1</th>
<th>PROFINET 接口 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 V 电源 IN</td>
<td>24 V 电源 OUT</td>
</tr>
<tr>
<td>X01.1 未连接</td>
<td>X02.1 1L+</td>
</tr>
<tr>
<td>X01.2 未连接</td>
<td>X02.2 1M</td>
</tr>
<tr>
<td>X01.3 已连接</td>
<td>X02.3 2L+</td>
</tr>
<tr>
<td>X01.4 已连接</td>
<td>X02.4 2M</td>
</tr>
<tr>
<td>X01.5 未连接</td>
<td>X02.5 未连接</td>
</tr>
</tbody>
</table>

- 推挽信号接口 RJ45 IP67（插座）
- 推挽信号接口 STB IP67（插座）

<table>
<thead>
<tr>
<th>PROFINET 接口 1</th>
<th>PROFINET 接口 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 V 电源 IN</td>
<td>24 V 电源 OUT</td>
</tr>
<tr>
<td>X03.1 传输 + (黄)</td>
<td>X04.1 传输 + (黄)</td>
</tr>
<tr>
<td>X03.2 传输 - (绿)</td>
<td>X04.2 传输 - (绿)</td>
</tr>
<tr>
<td>X03.3 接收 + (白)</td>
<td>X04.3 接收 + (白)</td>
</tr>
<tr>
<td>X03.4-5 未连接</td>
<td>X04.4-5 未连接</td>
</tr>
<tr>
<td>X03.6 接收 — (蓝)</td>
<td>X04.6 接收 — (蓝)</td>
</tr>
<tr>
<td>X03.7-8 未连接</td>
<td>X04.7-8 未连接</td>
</tr>
</tbody>
</table>

- 推挽信号接口 RJ45 IP67（插座）
- 推挽信号接口 STB IP67（插座）

<table>
<thead>
<tr>
<th>PROFINET 接口 1</th>
<th>PROFINET 接口 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 V 电源 IN</td>
<td>24 V 电源 OUT</td>
</tr>
<tr>
<td>X05.1 未连接</td>
<td>X05.2 数字量输出 1</td>
</tr>
<tr>
<td>X05.3 2M</td>
<td>X05.4 数字量输出 0</td>
</tr>
<tr>
<td>X05.5 未连接</td>
<td>X05.6 未连接</td>
</tr>
</tbody>
</table>

- M12 — 5 芯连接器（插座）
- M12 — 8 芯连接器（插座）

<table>
<thead>
<tr>
<th>HTL 编码器</th>
</tr>
</thead>
<tbody>
<tr>
<td>X06.1 1L+</td>
</tr>
<tr>
<td>X06.2 低电</td>
</tr>
<tr>
<td>X06.3 高电</td>
</tr>
<tr>
<td>X06.4 低电</td>
</tr>
<tr>
<td>X06.5 高电</td>
</tr>
<tr>
<td>X06.6 低电</td>
</tr>
<tr>
<td>X06.7 高电</td>
</tr>
<tr>
<td>X06.8 1M</td>
</tr>
</tbody>
</table>

- M12 — 5 芯连接器（插座）
- M12 — 8 芯连接器（插座）

<table>
<thead>
<tr>
<th>24 V 电源 IN</th>
</tr>
</thead>
<tbody>
<tr>
<td>X07.1 1L+</td>
</tr>
<tr>
<td>X07.2 数字量输入端 1</td>
</tr>
<tr>
<td>X07.3 1M</td>
</tr>
<tr>
<td>X07.4 数字量输入端 0</td>
</tr>
<tr>
<td>X07.5 未连接</td>
</tr>
</tbody>
</table>

- M12 — 5 芯连接器（插座）
- M12 — 8 芯连接器（插座）

<table>
<thead>
<tr>
<th>24 V 电源 IN</th>
</tr>
</thead>
<tbody>
<tr>
<td>X08.1 1L+</td>
</tr>
<tr>
<td>X08.2 数字量输入端 3</td>
</tr>
<tr>
<td>X08.3 1M</td>
</tr>
<tr>
<td>X08.4 数字量输入端 2</td>
</tr>
<tr>
<td>X08.5 未连接</td>
</tr>
</tbody>
</table>

- M12 — 5 芯连接器（插座）
- M12 — 8 芯连接器（插座）

<table>
<thead>
<tr>
<th>24 V 电源 IN</th>
</tr>
</thead>
<tbody>
<tr>
<td>X09.1 1L+</td>
</tr>
<tr>
<td>X09.2 数字量输入端 5</td>
</tr>
<tr>
<td>X09.3 1M</td>
</tr>
<tr>
<td>X09.4 数字量输入端 4</td>
</tr>
<tr>
<td>X09.5 未连接</td>
</tr>
<tr>
<td>X10.1 未连接</td>
</tr>
<tr>
<td>X10.2 +0 V</td>
</tr>
<tr>
<td>X10.3 模拟量输入 0</td>
</tr>
<tr>
<td>X10.4 模拟量输入 1</td>
</tr>
<tr>
<td>X10.5 未连接</td>
</tr>
<tr>
<td>X10.6 未连接</td>
</tr>
<tr>
<td>X10.7 1M</td>
</tr>
<tr>
<td>X10.8 未连接</td>
</tr>
</tbody>
</table>

- M12 — 5 芯连接器（插座）
- M12 — 8 芯连接器（插座）

24 V 电源 IN

<table>
<thead>
<tr>
<th>24 V 电源 OUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>X01.1 未连接</td>
</tr>
<tr>
<td>X01.2 未连接</td>
</tr>
<tr>
<td>X01.3 已连接</td>
</tr>
</tbody>
</table>
3.6 接口和电缆

变频器 SINAMICS G120D，配备控制单元 CU240D-2 和 CU250D-2

图 3-8　CU240D-2 PROFINET FO 连接器

<table>
<thead>
<tr>
<th>接口和电缆的俯视图。</th>
</tr>
</thead>
<tbody>
<tr>
<td>X01.1 未连接 24 V (1L)</td>
</tr>
<tr>
<td>X01.2 未连接 0 V (1M)</td>
</tr>
<tr>
<td>X01.3 已连接 24 V (2L)</td>
</tr>
<tr>
<td>X01.4 已连接 0 V (2M)</td>
</tr>
<tr>
<td>X01.5 零点接地</td>
</tr>
</tbody>
</table>

推挽信号接触器 M67 (插尾)
L+: 电子设备电源
L-: 数字量输出端电源
不需要零点接地。

<table>
<thead>
<tr>
<th>24 V 电源 OUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>X02.1 1L+</td>
</tr>
<tr>
<td>X02.2 2M</td>
</tr>
<tr>
<td>X02.3 2L+</td>
</tr>
<tr>
<td>X02.4 2M</td>
</tr>
<tr>
<td>X02.5 零点接地</td>
</tr>
</tbody>
</table>

推挽信号接触器 M67 (插头)

PROFINET 接口 1
| 光学接口 F0 |
| X03.1 光学接口 F0 |
| X03.2 光学接口 F0 |

PROFINET 接口 2
| 光学接口 F0 |
| X04.1 光学接口 F0 |
| X04.2 光学接口 F0 |

<table>
<thead>
<tr>
<th>24 V 电源 EN</th>
<th>500 mA</th>
</tr>
</thead>
<tbody>
<tr>
<td>X05.1 未连接</td>
<td></td>
</tr>
<tr>
<td>X05.2 数字量输出 1</td>
<td></td>
</tr>
<tr>
<td>X05.3 2M</td>
<td></td>
</tr>
<tr>
<td>X05.4 数字量输出 0</td>
<td></td>
</tr>
<tr>
<td>X05.5 零点接地</td>
<td></td>
</tr>
</tbody>
</table>

图 3-8 中的连接器，最小值 10 V

| HTL 编码器 |
| X06.1 1L+ |
| X06.2 通道 A |
| X06.3 通道 A' |
| X06.4 通道 B |
| X06.5 通道 B' |
| X06.6 通道 Z |
| X06.7 通道 Z' |
| X06.8 1M |

图 3-8 中的连接器，最小值 100 mA

<table>
<thead>
<tr>
<th>24 V 数字量输入端</th>
</tr>
</thead>
<tbody>
<tr>
<td>X07.1 1L+</td>
</tr>
<tr>
<td>X07.2 数字量输入端 1</td>
</tr>
<tr>
<td>X07.3 1M</td>
</tr>
<tr>
<td>X07.4 数字量输入端 0</td>
</tr>
<tr>
<td>X07.5 零点接地</td>
</tr>
</tbody>
</table>

图 3-8 中的连接器，最小值 10 V

<table>
<thead>
<tr>
<th>24 V 数字量输入端</th>
</tr>
</thead>
<tbody>
<tr>
<td>X08.1 1L+</td>
</tr>
<tr>
<td>X08.2 数字量输入端 3</td>
</tr>
<tr>
<td>X08.3 1M</td>
</tr>
<tr>
<td>X08.4 数字量输入端 2</td>
</tr>
<tr>
<td>X08.5 零点接地</td>
</tr>
</tbody>
</table>

图 3-8 中的连接器，最小值 10 V

<table>
<thead>
<tr>
<th>24 V 数字量输入端</th>
</tr>
</thead>
<tbody>
<tr>
<td>X09.1 1L+</td>
</tr>
<tr>
<td>X09.2 数字量输入端 5</td>
</tr>
<tr>
<td>X09.3 1M</td>
</tr>
<tr>
<td>X09.4 数字量输入端 4</td>
</tr>
<tr>
<td>X09.5 零点接地</td>
</tr>
</tbody>
</table>

图 3-8 中的连接器，最小值 10 V

<table>
<thead>
<tr>
<th>24 V 未连接</th>
</tr>
</thead>
<tbody>
<tr>
<td>X10.1 未连接</td>
</tr>
<tr>
<td>X10.2 +10 V</td>
</tr>
<tr>
<td>X10.3 模拟量输入 0</td>
</tr>
<tr>
<td>X10.4 模拟量输入 1</td>
</tr>
<tr>
<td>X10.5 零点接地</td>
</tr>
</tbody>
</table>

图 3-8 中的连接器，最小值 10 V

变频器 SINAMICS G120D，配备控制单元 CU240D-2 和 CU250D-2

入门指南，04/12014, FW V4.7, A5E34262374F AA
3.6 接口和电缆

变频器 SINAMICS G120D，配备控制单元 CU240D-2 和 CU250D-2

图 3-9 CU250D-2 PROFIBUS 连接器
3.6 接口和电缆

变频器 SINAMICS G120D 配备控制单元 CU240D-2 和 CU250D-2

图 3-10 CU250D-2 PROFINET 连接器

- **24 V 电源 IN**
 - X01.1 已连接 0 V (2M)
 - X01.2 未连接 0 V (1M)
 - X01.3 零点接地
 - X01.4 未连接 +24 V (H+)
 - X01.5 已连接 +24 V (2L+)

- **24 V 电源 OUT**
 - X02.1 2M
 - X02.2 1M
 - X02.3 零点接地
 - X02.4 1L+
 - X02.5 2L+

- **PROFINET 接口 1**
 - X03.1 传送 +
 - X03.2 接收 -
 - X03.3 传送 -
 - X03.4 接收 +

- **PROFINET 接口 2**
 - X04.1 传送 +
 - X04.2 接收 -
 - X04.3 传送 -
 - X04.4 接收 +

- **24 V 最大 500 mA**
 - X05.1 未连接
 - X05.2 数字量输出 1
 - X05.3 2M
 - X05.4 数字量输出 0
 - X05.5 零点接地

- **HTL 编码器**
 - X06.1 H1+
 - X06.2 通道 A
 - X06.3 通道 A
 - X06.4 通道 B
 - X06.5 通道 B
 - X06.6 通道 B
 - X06.7 通道 Z
 - X06.8 1M

- **数字量输入端**
 - X07.1 1L+
 - X07.2 数字量输入端 1
 - X07.3 1M
 - X07.4 数字量输入端 0
 - X07.5 零点接地

- **数字量输入端 2**
 - X08.1 1L+
 - X08.2 数字量输入端 3
 - X08.3 1M
 - X08.4 数字量输入端 2
 - X08.5 零点接地

- **数字量输入端 3**
 - X09.1 1L+
 - X09.2 数字量输入端 5
 - X09.3 1M
 - X09.4 数字量输入端 4
 - X09.5 零点接地

- **SSI 编码器**
 - X10.1 未连接
 - X10.2 1L+
 - X10.3 SSI 数据 +
 - X10.4 SSI 数据 -
 - X10.5 SSI CLK +
 - X10.6 SSI CLK -
 - X10.7 1M
 - X10.8 未连接

型号：7/8" - 16UN 连接器（插座）
- H1+：电子设备电源
- 2L+：数字量输出端电源
- 不需要零点接地

图 3-10 中展示了 CU250D-2 PROFINET 连接器的布局。
安装

3.6 接口和电缆

变频器 SINAMICS G120D，配备控制单元 CU240D-2 和 CU250D-2 入门指南，04/2014，FW V4.7, A5E34262374F AA 33
安装

3.6 接口和电缆

变频器 SINAMICS G120D，配备控制单元 CU240D-2 和 CU250D-2

图 3-12 G120D CU250D-2 PROFINET FO 连接器
3.6 接口和电缆

接线布局依据变频器的俯视图。

<table>
<thead>
<tr>
<th>电源</th>
<th></th>
<th>型号: HAN Q4/2 (连接器)</th>
<th>规格: 3 AC 380 V … 500 V ± 10 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1.1 L1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X1.2 L2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X1.3 L3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X1.4 未连接</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X1.11 未连接</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X1.12 未连接</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X1.1 PE 保护地</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>电机</th>
<th></th>
<th>型号: HAN Q8 (插座)</th>
<th>规格: -</th>
</tr>
</thead>
<tbody>
<tr>
<td>X2.1 U</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X2.2 未连接</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X2.3 W</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X2.4 电机绕组(-)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X2.5 温度传感器(+)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X2.6 电机绕组(-)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X2.7 V</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X2.8 温度传感器(-)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X2.9 PE 保护地</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

图 3-13 PM250D 连接器

电缆、连接器和工具说明

下表列出了电缆、连接器和制成 SINAMICS G120D 所需电缆的工具的详细说明。

此节详细说明的接口与变频器上存在的物理接口有关。

各个连接器的准备信息和结构信息有单独的详细说明，直接由制造商随订购部件发货。

只允许使用 75°C 的铜线。

说明

NFPA 兼容性

上述部件只设计用于安装在符合工业机械电气标准 NFPA79 的工业设备上。

部件本身的特性决定了它们可能不适合用于安装在符合国家电气规范 NFPA70 的设备上。

表格 3-3 工具

<table>
<thead>
<tr>
<th>工具</th>
<th>订货号</th>
</tr>
</thead>
<tbody>
<tr>
<td>压接工具（Q8/0 和 Q4/2）</td>
<td>3RK1902-0AH00</td>
</tr>
<tr>
<td>拆卸工具（Q8/0）</td>
<td>3RK1902-0AJ00</td>
</tr>
<tr>
<td>拆卸工具（Q4/2）</td>
<td>Harting零件编号 0999-000-0305</td>
</tr>
<tr>
<td>控制单元连接器不需要特殊工具</td>
<td></td>
</tr>
</tbody>
</table>

变频器 SINAMICS G120D，配备控制单元 CU240D-2 和 CU250D-2

入门指南，04/2014，FW V4.7，A5E34262374F AA
安装
3.6 接口和电缆

表格 3-4 控制单元连接器

<table>
<thead>
<tr>
<th>连接器</th>
<th>订货号</th>
</tr>
</thead>
<tbody>
<tr>
<td>直型连接器</td>
<td></td>
</tr>
<tr>
<td>弯型连接器</td>
<td></td>
</tr>
<tr>
<td>24 V 直流电源输入 (7/8")</td>
<td>6GK1905-0FB00</td>
</tr>
<tr>
<td>24 V 直流电源输出 (7/8")</td>
<td>6GK1905-0FA00</td>
</tr>
<tr>
<td>PROFIBUS 输入（M12）</td>
<td>6GK1905-0EB00</td>
</tr>
<tr>
<td>PROFIBUS 输出（M12）</td>
<td>6GK1905-0EA00</td>
</tr>
<tr>
<td>PROFINET 端口 1 和端口 2（M12）</td>
<td>6GK1901-0DB20-6AA0</td>
</tr>
<tr>
<td>编码器（M12）</td>
<td>3RK1902-4BA00-5AA0</td>
</tr>
<tr>
<td>供应商KnorrTec: Knorrtec</td>
<td></td>
</tr>
<tr>
<td>网址</td>
<td></td>
</tr>
<tr>
<td>数字量输入和输出，模拟量输入（M12）</td>
<td>3RK1902-4BA00-5AA0</td>
</tr>
</tbody>
</table>

表格 3-5 推挽式 PROFINET 和 24 V 直流连接器

<table>
<thead>
<tr>
<th>连接器</th>
<th>订货号</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 V DC 电源</td>
<td>6GK1907-0AB10-6AA0</td>
</tr>
<tr>
<td>RJ45 PROFINET</td>
<td>6GK1901-1BB10-6AA0</td>
</tr>
</tbody>
</table>

表格 3-6 光纤连接器

<table>
<thead>
<tr>
<th>连接器</th>
<th>订货号</th>
</tr>
</thead>
<tbody>
<tr>
<td>IE SC RJ POF PLUG PRO</td>
<td>6GK1900-0MB00-6AA0</td>
</tr>
<tr>
<td>IE SC RJ PCF PLUG PRO</td>
<td>6GK1900-0NB00-6AA0</td>
</tr>
</tbody>
</table>

表格 3-7 电源连接器

<table>
<thead>
<tr>
<th>额定功率</th>
<th>电缆尺寸</th>
<th>订货号</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.75 kW</td>
<td>2.5 mm² (14 AWG)</td>
<td>3RK1911-2BE50</td>
</tr>
<tr>
<td>3.00 kW</td>
<td>4 mm² (12 或 10 AWG)</td>
<td>3RK1911-2BE10</td>
</tr>
<tr>
<td>5.50 kW</td>
<td>6 mm² (10 AWG)</td>
<td>3RK1911-2BE30</td>
</tr>
</tbody>
</table>
通过解决方案合作伙伴订购电机连接器，含温度传感器和电机抱闸：解决方案合作伙伴

电缆长度

<table>
<thead>
<tr>
<th>电缆</th>
<th>屏蔽</th>
<th>最大长度</th>
</tr>
</thead>
<tbody>
<tr>
<td>电机</td>
<td>屏蔽电缆</td>
<td>15 m (49 ft)</td>
</tr>
<tr>
<td></td>
<td>非屏蔽电缆</td>
<td>30 m (98 ft)</td>
</tr>
<tr>
<td>温度传感器</td>
<td>屏蔽电缆</td>
<td>15 m (49 ft)</td>
</tr>
<tr>
<td></td>
<td>非屏蔽电缆</td>
<td>30 m (98 ft)</td>
</tr>
<tr>
<td>电机抱闸</td>
<td>屏蔽电缆</td>
<td>15 m (49 ft)</td>
</tr>
<tr>
<td></td>
<td>非屏蔽电缆</td>
<td>30 m (98 ft)</td>
</tr>
<tr>
<td>数字量输入</td>
<td>屏蔽电缆</td>
<td>30 m (98 ft)</td>
</tr>
<tr>
<td>数字量输出</td>
<td>屏蔽电缆</td>
<td>30 m (98 ft)</td>
</tr>
<tr>
<td>模拟量输入</td>
<td>屏蔽电缆</td>
<td>30 m (98 ft)</td>
</tr>
<tr>
<td>编码器</td>
<td>屏蔽电缆</td>
<td>30 m (98 ft)</td>
</tr>
</tbody>
</table>

1) 电机、温度传感器和电机抱闸通过混合电缆并使用Harting连接器与变频器相连。
3.6 接口和电缆

控制单元CU240D-2输入/输出端的出厂设置

在出厂设置中变频器的现场总线接口未激活。

图 3-14 控制单元CU240D-2的出厂设置
控制单元CU250D-2输入/输出端的出厂设置

在出厂设置中变频器的现场总线接口未激活。

图3-15 控制单元CU250D-2的出厂设置

更改端子功能

每个标记了颜色的端子的功能都是可以设置的。

为了避免逐一地更改端子，可通过预设置同时对多个端子进行设置。

上述的端子出厂设置符合预设置7（通过DI 3在现场总线和JOG之间切换）。

另见: 输入/输出端的预设置 (页40)。
3.7 输入/输出端的预设置

输入/输出端的预设置(CU240D-2)

<table>
<thead>
<tr>
<th>预设置 1: 两个固定转速</th>
<th>预设置 2: 两个固定转速，带安全功能</th>
<th>预设置 3: 四个固定转速</th>
</tr>
</thead>
<tbody>
<tr>
<td>现场总线接点无效。</td>
<td>现场总线接点无效。</td>
<td>现场总线接点无效。</td>
</tr>
<tr>
<td>X05.4 DO 0 故障</td>
<td>X05.4 DO 0 故障</td>
<td>X05.4 DO 0 故障</td>
</tr>
<tr>
<td>X05.2 DO 1 警告</td>
<td>X05.2 DO 1 警告</td>
<td>X05.2 DO 1 警告</td>
</tr>
<tr>
<td>X07.4 DI 0 ON/OFFI 正转</td>
<td>X07.4 DI 0 ON/OFFI</td>
<td>X07.4 DI 0 ON/OFFI</td>
</tr>
<tr>
<td>X07.2 DI 1 ON/OFFI 反转</td>
<td>X07.2 DI 1 固定转速 1</td>
<td>X07.2 DI 1 固定转速 1</td>
</tr>
<tr>
<td>X08.4 DI 2 应答</td>
<td>X08.2 DI 2 应答</td>
<td>X08.2 DI 2 应答</td>
</tr>
<tr>
<td>X08.2 DI 3 ---</td>
<td>X08.2 DI 3 ---</td>
<td>X08.2 DI 3 ---</td>
</tr>
<tr>
<td>X09.4 DI 4 固定转速 3</td>
<td>X09.4 DI 4 预留</td>
<td>X09.4 DI 4 预留</td>
</tr>
<tr>
<td>X09.2 DI 5 固定转速 4</td>
<td>X09.2 DI 5 安全功能</td>
<td>X09.2 DI 5 安全功能</td>
</tr>
<tr>
<td>X10.3 AI 0 ---</td>
<td>X10.3 AI 0 ---</td>
<td>X10.3 AI 0 ---</td>
</tr>
</tbody>
</table>

DI 4 和 DI 5
为高电平时，变频器将两个固定转速相加。

<table>
<thead>
<tr>
<th>预设置 4: PROFIBUS 或 PROFINET</th>
<th>预设置 5: PROFIBUS 或 PROFINET，带安全功能</th>
<th>预设置 6: PROFIBUS 或 PROFINET，带两种安全功能</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROFIdrive 报文 352</td>
<td>PROFIdrive 报文 352</td>
<td>PROFIdrive 报文 352</td>
</tr>
<tr>
<td>X05.4 DO 0 故障</td>
<td>X05.4 DO 0 故障</td>
<td>X05.4 DO 0 故障</td>
</tr>
<tr>
<td>X05.2 DO 1 警告</td>
<td>X05.2 DO 1 警告</td>
<td>X05.2 DO 1 警告</td>
</tr>
<tr>
<td>X07.4 DI 0 ---</td>
<td>X07.4 DI 0 ---</td>
<td>X07.4 DI 0 ---</td>
</tr>
<tr>
<td>X07.2 DI 1 ---</td>
<td>X07.2 DI 1 ---</td>
<td>X07.2 DI 1 ---</td>
</tr>
<tr>
<td>X08.4 DI 2 应答</td>
<td>X08.4 DI 2 应答</td>
<td>X08.4 DI 2 应答</td>
</tr>
<tr>
<td>X08.2 DI 3 ---</td>
<td>X08.2 DI 3 ---</td>
<td>X08.2 DI 3 ---</td>
</tr>
<tr>
<td>X09.4 DI 4 预留</td>
<td>X09.4 DI 4 预留</td>
<td>X09.4 DI 4 预留</td>
</tr>
<tr>
<td>X09.2 DI 5 预留</td>
<td>X09.2 DI 5 预留</td>
<td>X09.2 DI 5 预留</td>
</tr>
<tr>
<td>X10.3 AI 0 ---</td>
<td>X10.3 AI 0 ---</td>
<td>X10.3 AI 0 ---</td>
</tr>
</tbody>
</table>

多个 DI
同时为高电平时，变频器将各个固定转速相加。

变频器 SINAMICS G120D，配备控制单元 CU240D-2 和 CU250D-2
3.7 输入/输出端的预设置

<table>
<thead>
<tr>
<th>预设置7：通过DI 3在现场总线和JOG之间切换</th>
<th>预设置8：电动电位器（MOP），带安全功能</th>
</tr>
</thead>
<tbody>
<tr>
<td>出厂设置</td>
<td>出厂设置</td>
</tr>
<tr>
<td>PROFIdrive 报文1</td>
<td>现场总线接口无效。</td>
</tr>
<tr>
<td>X05.4 D0</td>
<td>故障</td>
</tr>
<tr>
<td>X05.2 D0</td>
<td>警告</td>
</tr>
<tr>
<td>X07.4 D1</td>
<td>ON/OFF1</td>
</tr>
<tr>
<td>X07.2 D1</td>
<td>MOP 升高</td>
</tr>
<tr>
<td>X08.4 D2</td>
<td>应答</td>
</tr>
<tr>
<td>X08.2 D3</td>
<td>低</td>
</tr>
<tr>
<td>X09.4 D4</td>
<td>---</td>
</tr>
<tr>
<td>X09.2 D5</td>
<td>---</td>
</tr>
<tr>
<td>X10.3 AI 0</td>
<td>---</td>
</tr>
<tr>
<td>X05.4 D0</td>
<td>故障</td>
</tr>
<tr>
<td>X05.2 D0</td>
<td>警告</td>
</tr>
<tr>
<td>X07.4 D1</td>
<td>ON/OFF1</td>
</tr>
<tr>
<td>X07.2 D1</td>
<td>MOP 升高</td>
</tr>
<tr>
<td>X08.4 D2</td>
<td>应答</td>
</tr>
<tr>
<td>X08.2 D3</td>
<td>低</td>
</tr>
<tr>
<td>X09.4 D4</td>
<td>---</td>
</tr>
<tr>
<td>X09.2 D5</td>
<td>---</td>
</tr>
<tr>
<td>X10.3 AI 0</td>
<td>设定值</td>
</tr>
<tr>
<td>现场总线接口无效。</td>
<td>现场总线接口无效。</td>
</tr>
<tr>
<td>现场总线接口无效。</td>
<td>现场总线接口无效。</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>预设置9：电动电位器（MOP）</th>
<th>预设置12：双线制控制，方法1</th>
</tr>
</thead>
<tbody>
<tr>
<td>现场总线接口无效。</td>
<td>现场总线接口无效。</td>
</tr>
<tr>
<td>X05.4 D0</td>
<td>故障</td>
</tr>
<tr>
<td>X05.2 D0</td>
<td>警告</td>
</tr>
<tr>
<td>X07.4 D1</td>
<td>ON/OFF1</td>
</tr>
<tr>
<td>X07.2 D1</td>
<td>MOP 升高</td>
</tr>
<tr>
<td>X08.4 D2</td>
<td>应答</td>
</tr>
<tr>
<td>X08.2 D3</td>
<td>低</td>
</tr>
<tr>
<td>X09.4 D4</td>
<td>---</td>
</tr>
<tr>
<td>X09.2 D5</td>
<td>---</td>
</tr>
<tr>
<td>X10.3 AI 0</td>
<td>设定值</td>
</tr>
<tr>
<td>现场总线接口无效。</td>
<td>现场总线接口无效。</td>
</tr>
<tr>
<td>现场总线接口无效。</td>
<td>现场总线接口无效。</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>预设置14：通过DI 3在现场总线和电动电位器（MOP）之间切换</th>
<th>预设置24：通过现场总线通讯；在现场总线中传输所有DI和DO</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROFIdrive 报文20</td>
<td>现场总线接口无效。</td>
</tr>
<tr>
<td>X05.4 D0</td>
<td>故障</td>
</tr>
<tr>
<td>X05.2 D0</td>
<td>警告</td>
</tr>
<tr>
<td>X07.4 D1</td>
<td>ON/OFF1</td>
</tr>
<tr>
<td>X07.2 D1</td>
<td>外部故障</td>
</tr>
<tr>
<td>X08.4 D2</td>
<td>应答</td>
</tr>
<tr>
<td>X08.2 D3</td>
<td>低</td>
</tr>
<tr>
<td>X09.4 D4</td>
<td>---</td>
</tr>
<tr>
<td>X09.2 D5</td>
<td>---</td>
</tr>
<tr>
<td>X10.3 AI 0</td>
<td>---</td>
</tr>
<tr>
<td>现场总线接口无效。</td>
<td>PROFIdrive 报文352 + PZD7</td>
</tr>
<tr>
<td>X07.4 D1</td>
<td>ON/OFF1</td>
</tr>
<tr>
<td>X07.2 D1</td>
<td>外部故障</td>
</tr>
<tr>
<td>X08.4 D2</td>
<td>应答</td>
</tr>
<tr>
<td>X08.2 D3</td>
<td>低</td>
</tr>
<tr>
<td>X09.4 D4</td>
<td>MOP 升高</td>
</tr>
<tr>
<td>X09.2 D5</td>
<td>MOP 降低</td>
</tr>
<tr>
<td>X10.3 AI 0</td>
<td>---</td>
</tr>
<tr>
<td>X05.4 D0</td>
<td>---</td>
</tr>
<tr>
<td>X05.2 D0</td>
<td>---</td>
</tr>
<tr>
<td>X08.4 D2</td>
<td>应答</td>
</tr>
<tr>
<td>X08.2 D3</td>
<td>低</td>
</tr>
<tr>
<td>X09.4 D4</td>
<td>MOP 升高</td>
</tr>
<tr>
<td>X09.2 D5</td>
<td>MOP 降低</td>
</tr>
<tr>
<td>X10.3 AI 0</td>
<td>---</td>
</tr>
<tr>
<td>X05.4 D0</td>
<td>---</td>
</tr>
<tr>
<td>X05.2 D0</td>
<td>---</td>
</tr>
</tbody>
</table>
安装

3.7 输入/输出端的预设置

预设置

25: 通过现场总线通讯，带安全功能；在现场总线中传输 DI 0...DI 3 和所有 DO

<table>
<thead>
<tr>
<th>PROFIdrive 报文 352 + PZD7</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[X05.4 DO 0]</td>
<td>PZD7</td>
</tr>
<tr>
<td>[X05.2 DO 1]</td>
<td></td>
</tr>
<tr>
<td>[X07.4 DI 0]</td>
<td></td>
</tr>
<tr>
<td>[X07.2 DI 1]</td>
<td>PZD7</td>
</tr>
<tr>
<td>[X08.4 DI 2]</td>
<td></td>
</tr>
<tr>
<td>[X08.2 DI 3]</td>
<td></td>
</tr>
<tr>
<td>[X09.4 DI 4]</td>
<td></td>
</tr>
<tr>
<td>[X09.2 DI 5]</td>
<td></td>
</tr>
<tr>
<td>[X10.3 AI 0]</td>
<td></td>
</tr>
</tbody>
</table>

输入/输出端的预设置(CU250D-2)

预设置 26: 输入/输出基本定位器；出厂设置

现场总线接口无效。

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[X07.4 Di 0]</td>
<td>0V/0FF1</td>
</tr>
<tr>
<td>[X08.4 Di 2]</td>
<td>应答</td>
</tr>
<tr>
<td>[X08.2 Di 3]</td>
<td>EPos JOG 1</td>
</tr>
<tr>
<td>[X09.4 Di 4]</td>
<td>EPos JOG 2</td>
</tr>
<tr>
<td>[X09.2 Di 5]</td>
<td>EPos JOG 方式</td>
</tr>
</tbody>
</table>

预设置 27: 现场总线基本定位器

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[X07.4 Di 0]</td>
<td></td>
</tr>
<tr>
<td>[X08.4 Di 2]</td>
<td></td>
</tr>
<tr>
<td>[X08.2 Di 3]</td>
<td></td>
</tr>
<tr>
<td>[X09.4 Di 4]</td>
<td></td>
</tr>
<tr>
<td>[X09.2 Di 5]</td>
<td></td>
</tr>
</tbody>
</table>

PROFIdrive 报文 111
3.8 通过 DIP 开关设置 PROFIBUS 地址

设置 PROFIBUS DP 地址

在使用 PROFIBUS DP 接口前，必须通过控制单元上的七位 PROFIBUS DP DIP 地址开关来设置变频器（节点设备）的地址。

PROFIBUS DP 地址的设置范围为 1 到 126。

说明

PROFIBUS DP DIP 地址开关的所有位置都是 OFF 时，变频器会使用参数 P0918 设置的地址。除此以外变频器都使用 DIP 开关设置的地址。

注意

外部24 V电源必须断开

在拨动 DIP 地址开关前必须首先关闭变频器的外部 24 V 电源。只有重启控制单元后，DIP 地址开关的修改才生效。

通过 DIP 开关设置 PROFIBUS DP 地址

PROFIBUS DP 地址可通过 DIP 开关来设置，具体设置方式见下表。

表格 3-9 PROFIBUS DP 接口地址设置示例

<table>
<thead>
<tr>
<th>DIP 开关</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>地址相加</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>32</td>
<td>64</td>
</tr>
<tr>
<td>示例 1: 地址 = 3 = 1 + 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>示例 2: 地址 = 88 = 8 + 16 + 64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

变频器 SINAMICS G120D，配备控制单元 CU240D-2 和 CU250D-2 入门指南, 04/2014, FW V4.7, A5E34262374F AA
3.9 连接 PROFINET 接口

以太网电缆和电缆长度

下表列出了我们推荐的几种以太网电缆。

表格 3-10 推荐的 PROFINET 电缆

<table>
<thead>
<tr>
<th></th>
<th>最大电缆长度</th>
<th>订货号</th>
</tr>
</thead>
<tbody>
<tr>
<td>工业以太网 FC TP 标准电缆 GP 2 x 2</td>
<td>100 m</td>
<td>6XV1840-2AH10</td>
</tr>
<tr>
<td>工业以太网 FC TP 柔性电缆 GP 2 x 2</td>
<td>85 m</td>
<td>6XV1870-2B</td>
</tr>
<tr>
<td>工业以太网 FC 拖曳电缆 GP 2 x 2</td>
<td>85 m</td>
<td>6XV1870-2D</td>
</tr>
<tr>
<td>工业以太网 FC 拖曳电缆 2 x 2</td>
<td>85 m</td>
<td>6XV1840-3AH10</td>
</tr>
<tr>
<td>工业以太网 FC 船用电缆 2 x 2</td>
<td>85 m</td>
<td>6XV1840-4AH10</td>
</tr>
</tbody>
</table>

电缆屏蔽层

PROFINET 电缆的屏蔽层必须和保护地连接在一起。

在剥除芯线末端的绝缘层时，注意不要伤及铜线。
3.10 变频器和电机接地

变频器接地

- 变频器应通过电源插头中的 PE 连接接地。
- 请根据下方接线图所示将连接器接地。

![变频器接地示意图](image)

电机接地

- 电机应通过电机插头中的 PE 线接地。
- 连接器应按上图（变频器接地）所示接地。
 虽然电源电缆插头和电机电缆插头的结构不同，但两者的接地原理相同。
- 请根据实际情况对电机外壳接地。
安装

3.10 变频器和电机接地

EMC 电缆固定头

如果在安装设备时需要使用电缆固定头，我们建议使用 EMC 电缆固定头。

正确安装后，该电缆固定头也可达到防护等级 IP68。

图 3-17 EMC 电缆固定头（Blueglobe）

表格 3-11 EMC 电缆固定头（黄铜镀镍），带符合 EN50262 的公制螺纹。

<table>
<thead>
<tr>
<th>连接螺纹/长度</th>
<th>A</th>
<th>D [mm]</th>
<th>C [mm]</th>
<th>厚度范围，不含入口，最大/最小值[mm]</th>
<th>厚度范围，最大/最小值[mm]</th>
<th>对边宽度SW * E</th>
<th>订货号</th>
</tr>
</thead>
<tbody>
<tr>
<td>M16 x 1.5</td>
<td>6,0</td>
<td>29</td>
<td></td>
<td>11 ... 7</td>
<td>9 ... 7</td>
<td>20 x 22.2</td>
<td>bg216mstri</td>
</tr>
<tr>
<td>M20 x 1.5</td>
<td>6,5</td>
<td>29</td>
<td></td>
<td>14 ... 9</td>
<td>12 ... 7</td>
<td>24 x 26.5</td>
<td>bg220mstri</td>
</tr>
<tr>
<td>M25 x 1.5</td>
<td>7,5</td>
<td>29</td>
<td></td>
<td>20 ... 13</td>
<td>16 ... 10</td>
<td>30 x 33</td>
<td>bg255mstri</td>
</tr>
<tr>
<td>M32 x 1.5</td>
<td>8,0</td>
<td>32</td>
<td></td>
<td>25 ... 20</td>
<td>20 ... 13</td>
<td>36 x 39.5</td>
<td>bg232mstri</td>
</tr>
</tbody>
</table>
3.11 接线端子和抗干扰措施

所有的接线端子要牢固可靠、长久耐用。
对于经过喷漆或氧化处理的金属部件，连接螺钉时应加装一种特殊的接触垫片，它可以去除绝缘表面，形成金属导电面。另一种方法是直接去除接触位置上的绝缘表面。

接触器线圈、继电器、磁铁阀门和电机抱闸必须连接抗干扰元件，以削弱在触点打开时产生的高频干扰，例如：在交流线圈上接上 RC 元件或变阻器，在直流线圈上接上空转二极管。
抗干扰元件必须直接连接到对应的线圈上。

3.12 等电位连接

接地措施和高频等电位连接措施

驱动系统内部需要实现等电位连接，方法是将所有电气驱动部件和机械驱动部件（变压器、电机负载机械）连接到接地系统上。
该接地可以使用能源领域内通用的没有高频特性的保护接地导线。
除了该连接外，还必须考虑变频器和电机的高频等电位连接。
1. 应使用屏蔽电机电缆。
2. 电缆屏蔽层应连接到变频器上的电机接线端子与电机接线盒上。
3. 在变频器的 PE 端子与金属框架之间设置接地线，要尽量短。
下图举例说明了所有需要实施的接地措施和高频等电位连接措施。
3.12 等电位连接

变压器
带 PE 等电位连接的二级配电
金属框架
PE 端子与金属框架之间的连接
电机电缆屏蔽层与连接器外壳的电气连接。
电机电缆屏蔽层通过导电的 PG 电缆固定头与电机接线盒电气连接
被驱动的机械
传统的接地系统。

- 无特殊高频特性的标准大功率 PE 端子。
- 确保了低频等电位连接并防止人身伤害。

基础接地

图 3-18 驱动系统上和负载机械上需要实施的接地措施和高频等电位连接措施

调试

4.1 SINAMICS G120D 默认设置

出厂默认设置

变频器系统出厂时由一个控制单元和一个功率模块组成。如果变频器的出厂设置（取决于变频器型号和尺寸）与以下 4 极电机数据相匹配，您无需进行其他设置，直接采用出厂设置即可直接运行变频器：

<table>
<thead>
<tr>
<th>参数</th>
<th>设置</th>
</tr>
</thead>
<tbody>
<tr>
<td>出厂电源频率</td>
<td>50 Hz</td>
</tr>
<tr>
<td>额定电机电压</td>
<td>P0304</td>
</tr>
<tr>
<td>额定电机电流</td>
<td>P0305</td>
</tr>
<tr>
<td>额定电机功率</td>
<td>P0307</td>
</tr>
<tr>
<td>额定电机频率</td>
<td>P0310</td>
</tr>
<tr>
<td>额定电机转速</td>
<td>P0311</td>
</tr>
</tbody>
</table>

（推荐使用西门子标准电机。）

此外，必须遵守以下要求：

使用数字量输入进行控制（给出ON/OFF指令） 参见以下预定义输入。
- 异步电机 P0300 = 1
- 自冷电机 P0335 = 0
- 电机过载系数 P0640 = 150 %
- 最小频率 P1080 = 0 Hz
- 最大频率 P1082 = 50 Hz
- 斜升时间 P1120 = 10 s
- 斜降时间 P1121 = 10 s
- 线性 V/f 特性曲线 P1300 = 0

控制单元通过 PROFIBUS 或 PROFINET 接口来控制和操作变频器。PROFIBUS 或 PROFINET 接口可根据需要用于进一步配置和控制变频器。
4.2 通过 IOP 调试变频器

调试变频器

智能型操作面板 (Intelligent Operator Panel，IOP) 设计用于增强 SINAMICS 变频器的接口和通讯能力。

IOP 通过 RS232 光缆连接至变频器。
它会自动识别出相连的控制单元的型号并只显示该控制单元的参数和功能。

您需要什么？

IOP
手持套件是一套完整的套件包，里面包含有使用光纤口调试和配置变频器的必要组件。随 IOP 手持套件一同发货的电缆与 G120D 变频器上的光纤口不兼容；您需要另行订购光纤。

- IOP 手持套件组订货号：6SL3255-0AA00-4HA0。
- 光纤订货号：3RK1922-2BP00

图 4-1 CU240D-2 和 CU250D-2 上的光纤口
基本调试向导

详述如下的基本调试向导用于软件版本为4.4或以上的控制单元。

步骤

按如下步骤通过IOP操作面板来执行变频器的基本调试:

1. 从向导菜单选择“基本调试...”。

2. 选择“是”或“否”恢复出厂设置。
 在保存基本调试过程中所做的所有参数变更之前恢复出厂设置。

3. 选择连接电机的控制模式。

4. 选择变频器和连接电机的正确电机数据。
 该数据用于计算该应用的正确速度和显示值。

5. 选择变频器和连接电机的正确频率。
 使用87赫兹可以使电机的运行速度达到正常速度的1.73倍。
调试

4.2 通过 IOP 调试变频器

6. 在这个阶段，向导将开始要求具体涉及到连接电机的数据。该数据从电机铭牌获得。

7. 电机数据屏幕显示连接电机的频率特点。

8. 从电机铭牌输入正确的电机电压。

9. 从电机铭牌输入正确的电机电流。

10. 从电机铭牌输入正确的电机功率。

11. 从电机铭牌输入正确的电机转速。转速单位为 RPM。
12. 选择运行或禁用电机数据识别功能。
激活此功能后，只有当变频器接收到首次运行命令后才会开始运行。

13. 选择带零脉冲或不带零脉冲的编码器。
如果电机未安装编码器，则不显示该选项。

14. 输入编码器每转正确的脉冲。
该信息通常印在编码器套管上。

15. 选择适合您的应用的宏。
一旦选择后，软件将自动配置所有输入、输出、命令源和设定值。
更多信息请参阅详细介绍每个宏的精确设置的章节。请参阅本手册的安装部分。

16. 设置连接电机应该运行的最低速度。

17. 设置加速时间（单位：秒）。
这是变频器/电机系统从接收到运行命令到达到所选电机转速的时间。
18. 设置减速时间（单位：秒）。
这是变频器/电机系统从接收到OFF1命令到停止的时间。

19. 显示所有的设置概要。
如果设置正确，选择继续。

20. 最后的屏幕有两种选项：
- 保存设置
- 取消向导
如果选择保存，恢复出厂设置并将设置保存到变频器内存。
在“菜单”的“参数设置”中使用“参数保存模式”功能分配安全数据的位置。

已完成变频器的基本调试。
4.3 调试应用程序

调试应用程序

IOP

内设计有针对一系列应用程序的调试向导，向导提出和应用相关的问题，引导您逐步完成调试。将该向导和 IOP 操作指南内的接线图结合在一起使用，您可以更加快速方便地完成调试。

图 4-2 示例：IOP 向导和变频器接线图组合使用
调试

4.4 恢复出厂设置

概述

通过 P0970 您可以恢复所有变频器参数的出厂设置。
出厂设定值在参数手册的“出厂设置”下指出。
更多详情请参见本手册章节“控制单元出厂设置”。

说明

恢复出厂设置时，通讯存储卡重新初始化。即在恢复出厂设置这段时间内通讯中断。

警告

恢复带有故障安全功能的控制单元的出厂设置
通过 P0970 = 1 可恢复所有参数的出厂设置，除了故障安全功能的参数。
必须另外设置 P0970 = 5 才可恢复故障安全功能参数的出厂设置。
此参数重设受密码保护。
通过 P0970 = 5 恢复出厂设置后要进行一次验收测试。
故障排查

5.1 故障和警告列表

Axxxxx 警告
Fyyyyy:故障

表格 5-1 安全功能的重要报警和故障

<table>
<thead>
<tr>
<th>号</th>
<th>原因</th>
<th>解决办法</th>
</tr>
</thead>
<tbody>
<tr>
<td>F01600</td>
<td>STOP A 被触发</td>
<td>选择 STO，并再次撤销选择。</td>
</tr>
<tr>
<td>F01650</td>
<td>要求验收测试</td>
<td>执行验收测试并填写验收报告。重新给控制单元上电。</td>
</tr>
<tr>
<td>F01659</td>
<td>拒绝参数的写入任务</td>
<td>原因：要恢复变频器的出厂设置。但当前安全功能已使能，因此无法复位安全功能。通过操作面板来解决：</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p0010 = 30 参数复位</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p9761 = … 输入安全功能的密码。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p0970 = 5 启动安全功能参数的复位。参数复位后，变频器设置 p0970 = 5。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>随后将变频器恢复出厂设置。</td>
</tr>
<tr>
<td>A01666</td>
<td>F-DI 在安全应答时出现稳态1-信号</td>
<td>将 F-DI 设置为逻辑 0-信号。</td>
</tr>
<tr>
<td>A01698</td>
<td>处于安全功能的调试模式中</td>
<td>在结束安全功能的调试后，该信息消失。</td>
</tr>
<tr>
<td>A01699</td>
<td>需要进行安全回路的断路测试</td>
<td>在下一次撤销功能"STO"后，该信息消失，监控时间归零。</td>
</tr>
<tr>
<td>F30600</td>
<td>STOP A 被触发</td>
<td>选择 STO，并再次撤销选择。</td>
</tr>
</tbody>
</table>
故障排查
5.1 故障和警告列表

表格 5-2 重要故障和报警列表

<table>
<thead>
<tr>
<th>号</th>
<th>原因</th>
<th>解决办法</th>
</tr>
</thead>
<tbody>
<tr>
<td>F01018</td>
<td>启动多次中断</td>
<td>1. 重新给变频器上电。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. 发生该故障后，变频器恢复出厂设置。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. 调试变频器。</td>
</tr>
<tr>
<td>A01028</td>
<td>配置错误</td>
<td>说明：</td>
</tr>
<tr>
<td></td>
<td></td>
<td>存储卡上的设置针对的是另一种型号（即不同订货号、MLFB）的模块。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>请检查该模块的参数，必要时重新调试。</td>
</tr>
<tr>
<td>F01122</td>
<td>探头输入处的频率过高</td>
<td>降低探头输入处脉冲的频率。</td>
</tr>
<tr>
<td>A01590</td>
<td>电机维护间隔已满</td>
<td>开展维护作业。</td>
</tr>
<tr>
<td>A01900</td>
<td>PROFIBUS: 配置报文出错</td>
<td>说明： PROFIBUS 主机尝试用错误的配置报文来建立连接。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>检查主站和从站上的总线配置。</td>
</tr>
<tr>
<td>A01910</td>
<td>PROFIBUS: 现场总线接口设定值超时</td>
<td>当p2040 ≠ 0 ms并出现以下某个情况时，就会发出报警：</td>
</tr>
<tr>
<td>F01910</td>
<td></td>
<td>• 总线连接中断</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• MODBUS 主站关闭</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 通讯错误（CRC、奇偶校验位、逻辑运算错误）</td>
</tr>
<tr>
<td></td>
<td></td>
<td>现场总线监控时间 p2040 太小。</td>
</tr>
<tr>
<td>A01920</td>
<td>PROFIBUS: 周期性通讯中断</td>
<td>说明： 到 PROFIBUS 主站的周期性通讯中断。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>建立 PROFIBUS 连接，周期性通讯，激活 PROFIBUS 主站。</td>
</tr>
<tr>
<td>F03505</td>
<td>模拟量输入断线</td>
<td>检查和信号源的连接是否中断。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>检查信号的电平。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>从 r0752 查看模拟量输入上测出的输入电流。</td>
</tr>
<tr>
<td>A03520</td>
<td>温度传感器异常</td>
<td>检查传感器是否正确连接。</td>
</tr>
<tr>
<td>A05000</td>
<td>功率模块过热</td>
<td>检查以下项目：</td>
</tr>
<tr>
<td>A05001</td>
<td></td>
<td>- 环境温度是不是超出规定值？</td>
</tr>
<tr>
<td>A05002</td>
<td></td>
<td>- 负载条件和工作周期设计合理吗？</td>
</tr>
<tr>
<td>A05004</td>
<td></td>
<td>- 冷却装置失灵？</td>
</tr>
</tbody>
</table>
故障排查

5.1 故障和警告列表

<table>
<thead>
<tr>
<th>号</th>
<th>原因</th>
<th>解决办法</th>
</tr>
</thead>
<tbody>
<tr>
<td>F06310</td>
<td>负载电压(p0210)参数设定错误</td>
<td>检查设置的输入电压，必要时进行修改(p0210)。检查电源电压。</td>
</tr>
<tr>
<td>F07011</td>
<td>电机过热</td>
<td>减轻电机负载。检查环境温度。检查传感器的走线和连接。</td>
</tr>
<tr>
<td>A07012</td>
<td>I2t 电机模型过热</td>
<td>检查电机负载，必要时减轻负载。选择电机的环境温度。检查热时间常数 p0611。检查过热故障阈值 p0605。</td>
</tr>
<tr>
<td>A07015</td>
<td>电机温度传感器警告</td>
<td>检查传感器是否正确连接。检查参数 p0601 的设置。</td>
</tr>
<tr>
<td>F07016</td>
<td>电机温度监控器异常</td>
<td>检查传感器是否正确连接。检查参数 p0601 的设置。</td>
</tr>
<tr>
<td>F07086</td>
<td>单位切换：超出参数限值</td>
<td>检查参数值，必要时进行修改。</td>
</tr>
<tr>
<td>F07088</td>
<td>自动重启中断</td>
<td>提高重启尝试次数（p1211）。当前次数显示在 r1214 中。在 p1212 中提高等待时间并且 / 或者在 p1213 中提高监控时间。设置 ON 指令（p0840）。提高或关闭功率模块的监控时间（p0857）。降低故障计数器清零的等待时间 p1213[1]，这样就可以减少记录的故障数量。</td>
</tr>
<tr>
<td>A07321</td>
<td>自动重启激活</td>
<td>说明：自动重启功能激活。在电源恢复和 / 或当前故障被排除后，变频器自动重启。</td>
</tr>
<tr>
<td>F07330</td>
<td>测出的搜索电流过报警</td>
<td>提高搜索电流 p1202；检查电机连接。</td>
</tr>
</tbody>
</table>
| A07400 | VDC_max 调节器生效 | 如果不希望调节器发挥作用：
- 提高斜坡下降时间。
- 关闭 VDC_max 调节器（在矢量控制中设置 p1240 = 0，在 V/f 控制中设置 p1280 = 0）。 |

变频器 SINAMICS G120D，配备控制单元 CU240D-2 和 CU250D-2

入门指南, 04/2014, FW V4.7, A5E34262374F AA 59
故障排查

5.1 故障和警告列表

<table>
<thead>
<tr>
<th>号</th>
<th>原因</th>
<th>解决办法</th>
</tr>
</thead>
<tbody>
<tr>
<td>A07409</td>
<td>V/f控制电流极限调节器生效</td>
<td>在采取以下某个措施后该报警自动消失：</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 提高电流极限(p0640)。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 减轻负载。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 延长达到设定转速的加速时间。</td>
</tr>
<tr>
<td>F07426</td>
<td>工艺调节器实际值被限制</td>
<td>• 根据信号电平来调整限值(p2267, p2268)。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 检查实际值的标定系数(p2264)。</td>
</tr>
<tr>
<td>F07801</td>
<td>电机过电流</td>
<td>检查电流限值(p0640)。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V/f控制：检查电流极限调节器(p1340 ... p1346)。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>延长加速时间(p1120)或减轻负载。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>检查电机和电机连线的短接和接地。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>检查电机星形接线还是三角形接线，电机铭牌上的数据。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>检查功率模块和电机是否配套。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>电机还在旋转时，选择捕捉重启(p1200)。</td>
</tr>
<tr>
<td>A07805</td>
<td>驱动：功率单元过载I2t</td>
<td>• 减轻持续负载。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 调整工作周期。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 电机和功率模块的额定电流之间的配套性</td>
</tr>
<tr>
<td>F07807</td>
<td>检测出短路</td>
<td>• 检查变频器的电机侧接线是否出现线间短路。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 检查电机电缆和电源电缆是否接反。</td>
</tr>
<tr>
<td>A07850</td>
<td>外部报警1</td>
<td>触发了信号“外部报警1”。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>参数p2112用于确定外部报警的信号源。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>解决办法：消除报警原因。</td>
</tr>
<tr>
<td>F07860</td>
<td>外部故障1</td>
<td>消除引起故障的外部原因。</td>
</tr>
<tr>
<td>F07900</td>
<td>电机堵转</td>
<td>• 检查电机是否能自由旋转。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 检查转矩限值：r1538为正旋转方向，r1539为负旋转方向。</td>
</tr>
<tr>
<td>F07901</td>
<td>电机超速</td>
<td>激活转速极限调节器的前馈(p1401 位 7 = 1)。</td>
</tr>
<tr>
<td>F07902</td>
<td>电机失步</td>
<td>检查是否正确设置了电机参数，开展电机数据检测。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>检查电流极限(p0640, r0067, r0289)。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>如果它太小，变频器不能励磁。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>检查电机电缆是否被断开。</td>
</tr>
<tr>
<td>A07903</td>
<td>电机转速差</td>
<td>增大p2163和/or p2166。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>提高转矩、电流和功率极限值。</td>
</tr>
</tbody>
</table>
故障排查

5.1 故障和警告列表

<table>
<thead>
<tr>
<th>号</th>
<th>原因</th>
<th>解决办法</th>
</tr>
</thead>
<tbody>
<tr>
<td>A07910</td>
<td>电机过热</td>
<td>检查电机负载。选择电机的环境温度。检查 KTY84 传感器。</td>
</tr>
<tr>
<td>A07920</td>
<td>转矩/转速过低</td>
<td>转矩偏离了“转矩-转速”包络线。</td>
</tr>
<tr>
<td>A07921</td>
<td>转矩/转速过高</td>
<td>检查电机和负载之间的连接。</td>
</tr>
<tr>
<td>A07922</td>
<td>转矩/转速在公差范围外</td>
<td>根据负载情况相应地修改设置。</td>
</tr>
<tr>
<td>F07923</td>
<td>转矩/转速过低</td>
<td>检查电机和负载之间的连接。</td>
</tr>
<tr>
<td>F07924</td>
<td>转矩/转速过高</td>
<td>根据负载情况相应地修改设置。</td>
</tr>
<tr>
<td>A07927</td>
<td>直流制动生效</td>
<td>不需要</td>
</tr>
<tr>
<td>A07980</td>
<td>电机数据旋转检测生效</td>
<td>不需要</td>
</tr>
<tr>
<td>A07981</td>
<td>缺少“电机数据旋转检测”的使能</td>
<td>应答目前存在的故障信息。给出缺少的使能，见 r00002、r0046。</td>
</tr>
<tr>
<td>A07991</td>
<td>电机数据检测激活</td>
<td>接通电机，检测电机数据</td>
</tr>
<tr>
<td>F08501</td>
<td>设定值超时</td>
<td>检查PROFINET连接。在运行（RUN）状态下设置控制器。当故障再次出现时，检查设置的监控时间p2044。</td>
</tr>
<tr>
<td>F08502</td>
<td>生命符号监控时间已过</td>
<td>检查PROFINET连接。</td>
</tr>
<tr>
<td>F08510</td>
<td>发送配置数据无效</td>
<td>检查PROFINET配置。</td>
</tr>
<tr>
<td>A08511</td>
<td>接收配置数据无效</td>
<td>无周期性通讯</td>
</tr>
<tr>
<td>A08526</td>
<td>无周期性通讯</td>
<td>激活周期性运行的控制器。检查参数“Name of Station”和“IP of Station”(r61000, r61001)。</td>
</tr>
<tr>
<td>A08565</td>
<td>设置参数的一致性错误</td>
<td>请检查以下项目：IP地址、子网掩码或缺省网关是否正确。网络中的IP地址或站名称是否重复。站名称是否包含无效字符。</td>
</tr>
</tbody>
</table>
故障排查

5.1 故障和警告列表

<table>
<thead>
<tr>
<th>号</th>
<th>原因</th>
<th>解决办法</th>
</tr>
</thead>
<tbody>
<tr>
<td>F08700</td>
<td>通讯出错</td>
<td>在CAN通讯中出现了一个故障。请检查以下项目：</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 总线电缆。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 总线波特率(p8622)。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 位计时(p8623)。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 主站</td>
</tr>
<tr>
<td></td>
<td></td>
<td>手动排除故障原因后，通过p8608 = 1启动CAN控制器！</td>
</tr>
<tr>
<td>F13100</td>
<td>专有技术保护：复制保护故障</td>
<td>存储卡的专有技术保护以及复制保护已激活。在检测存储卡时出现故障。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 插入一张合适的存储卡，暂时断开变频器电源，然后再次给变频器上电。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 取消复制保护(p7765)。</td>
</tr>
<tr>
<td>F13101</td>
<td>专有技术保护：复制保护无法激活</td>
<td>插入一张有效的存储卡。</td>
</tr>
<tr>
<td>F30001</td>
<td>过电流</td>
<td>检查以下项目：</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 电机数据，必要时开展调试。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 电机的接线方式(Y / Δ)。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- V/f控制：电机和功率模块的额定电流之间的配套性。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 电源质量</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 电源换向电抗器是否正确连接。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 功率电缆的连接</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 功率电缆是否短路或有接地错误。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 功率电缆的长度</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 电源相位</td>
</tr>
<tr>
<td></td>
<td></td>
<td>如果这些都没有用：</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- V/f控制：提高加速时间</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 降低负载</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 更换功率模块</td>
</tr>
<tr>
<td>F30002</td>
<td>直流母线过电压</td>
<td>提高减速时间 p1121。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>设置圆弧时间(p1130, p1136)。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>激活 Vdc 电压控制器（p1240，p1280）。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>检查电源电压 (p0210)。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>检查电源相位</td>
</tr>
<tr>
<td>号</td>
<td>原因</td>
<td>解决办法</td>
</tr>
<tr>
<td>-----</td>
<td>---------------------</td>
<td>--</td>
</tr>
<tr>
<td>F30003</td>
<td>直流母线欠电压</td>
<td>检查电源电压（p0210）。</td>
</tr>
<tr>
<td>F30004</td>
<td>变频器过热</td>
<td>检查变频器风扇是否工作。检查环境温度是否在规定范围内。检查电机是否过载。降低脉冲频率。</td>
</tr>
<tr>
<td>F30005</td>
<td>I²t 变频器过载</td>
<td>检查电机、功率模块的额定电流。降低电流极限 p0640。V/f 特性曲线：降低 p1341。</td>
</tr>
<tr>
<td>F30011</td>
<td>电源缺相</td>
<td>检查变频器的进线熔断器。检查电机的电源电缆。</td>
</tr>
<tr>
<td>F30015</td>
<td>电机电源线缺相</td>
<td>检查电机电源电缆。提高加速时间、减速时间(p1120)。</td>
</tr>
<tr>
<td>F30021</td>
<td>接地</td>
<td>• 检查功率线路连接。 • 检查电机。 • 检查变流器。 • 检查制动连接电缆和接触情况（有可能出现断线）。</td>
</tr>
<tr>
<td>F30027</td>
<td>直流母线过电压</td>
<td>检查电源电压。检查电源输入电压的设置(p0210)。</td>
</tr>
<tr>
<td>F30035</td>
<td>供风温度过热</td>
<td>• 检查风扇是否运行。</td>
</tr>
<tr>
<td>F30036</td>
<td>内部过热</td>
<td>• 检查滤网。 • 检查环境温度是否在允许的范围内。</td>
</tr>
<tr>
<td>F30037</td>
<td>整流器温度过高</td>
<td>参见F30035的解决办法，另外还有： • 检查电机负载。 • 检查电源相位。</td>
</tr>
<tr>
<td>A30049</td>
<td>内部风扇损坏</td>
<td>检查内部风扇，必要时更换风扇。</td>
</tr>
<tr>
<td>F30059</td>
<td>内部风扇损坏</td>
<td>检查内部风扇，必要时更换风扇。</td>
</tr>
<tr>
<td>F30074</td>
<td>控制单元和功率模块之间的通讯故障</td>
<td>变频器的24 V供电（端子31和32）暂时中断。检查电源和布线。</td>
</tr>
<tr>
<td>A30502</td>
<td>直流母线过电压</td>
<td>• 检查变频器输入电压(p0210)。 • 检查电源电抗器的选型。</td>
</tr>
</tbody>
</table>
故障排查

5.1 故障和警告列表

<table>
<thead>
<tr>
<th>号</th>
<th>原因</th>
<th>解决办法</th>
</tr>
</thead>
<tbody>
<tr>
<td>A30920</td>
<td>温度传感器异常</td>
<td>检查传感器是否正确连接。</td>
</tr>
<tr>
<td>A50001</td>
<td>PROFINET配置错误</td>
<td>PROFINET控制器尝试用错误的配置报文来建立连接。检查“共享设备”是否已激活(p8929 = 2)。</td>
</tr>
<tr>
<td>A50010</td>
<td>PROFINET站名称无效</td>
<td>修改站名称(p8920)并设置p8925 = 2将其激活。</td>
</tr>
<tr>
<td>A50020</td>
<td>PROFINET:缺少第二个控制器</td>
<td>“共享设备”已激活(p8929 = 2)。但是只有和一个PROFINET控制器的连接。</td>
</tr>
</tbody>
</table>

其它信息见参数手册。
5.2 状态 LED 一览

LED 状态显示

控制单元上有一排双色 LED 来指明变频器的运行状态。具体而言，这些状态有:

- 一般故障状态
- 通讯状态
- 输入和输出的状态
- Safety Integrated 安全功能的状态

下图展示了各个 LED 在控制单元上的位置。

图 5-1 状态 LED 的位置
故障排查

5.2 状态 LED 一览

状态 LED 的说明

下表详细说明了 LED 指出的各个状态的含义。

表格 5-3 一般状态 LED 的说明

<table>
<thead>
<tr>
<th>RDY</th>
<th>BF</th>
<th>功能说明</th>
</tr>
</thead>
<tbody>
<tr>
<td>绿色恒亮</td>
<td>-</td>
<td>运行就绪（没有故障）</td>
</tr>
<tr>
<td>绿色，慢速闪烁</td>
<td>-</td>
<td>正在调试或恢复出厂设置</td>
</tr>
<tr>
<td>红色恒亮</td>
<td>熄灭</td>
<td>正在更新固件</td>
</tr>
<tr>
<td>红色，慢速闪烁</td>
<td>红色，慢速闪烁</td>
<td>固件更新结束，要求重新上电进行复位</td>
</tr>
<tr>
<td>红色，快速闪烁</td>
<td>-</td>
<td>一般故障状态</td>
</tr>
<tr>
<td>红色，快速闪烁</td>
<td>红色恒亮</td>
<td>固件更新出错</td>
</tr>
<tr>
<td>红色，快速闪烁</td>
<td>红色，快速闪烁</td>
<td>固件不兼容/存储卡错误</td>
</tr>
</tbody>
</table>

表格 5-4 PROFIBUS 通讯 LED 的说明

<table>
<thead>
<tr>
<th>BF</th>
<th>功能说明</th>
</tr>
</thead>
<tbody>
<tr>
<td>熄灭</td>
<td>周期性数据交换（或不使用 PROFIBUS，p2030 = 0）</td>
</tr>
<tr>
<td>红色，慢速闪烁</td>
<td>总线故障 - 配置错误</td>
</tr>
<tr>
<td>红色，快速闪烁</td>
<td>总线故障：</td>
</tr>
<tr>
<td></td>
<td>- 没有数据交换</td>
</tr>
<tr>
<td></td>
<td>- 查找波特率：没有找到正确的波特率</td>
</tr>
<tr>
<td></td>
<td>- 没有连接：变频器和 PLC 之间的连接中断</td>
</tr>
</tbody>
</table>

表格 5-5 SAFE LED 的说明

<table>
<thead>
<tr>
<th>SAFE</th>
<th>功能说明</th>
</tr>
</thead>
<tbody>
<tr>
<td>黄色恒亮</td>
<td>使能了一个或多个安全功能，但是安全功能不在执行中</td>
</tr>
<tr>
<td>黄色，慢速闪烁</td>
<td>正在执行一个或多个安全功能，没有出现安全功能故障</td>
</tr>
<tr>
<td>黄色，快速闪烁</td>
<td>变频器检测出一个安全功能故障，执行停止响应。</td>
</tr>
</tbody>
</table>
5.2 状态 LED 一览

表格 5-6 PROFINET 通讯 LED 的说明

<table>
<thead>
<tr>
<th>ACT</th>
<th>LNK</th>
<th>功能说明</th>
</tr>
</thead>
<tbody>
<tr>
<td>恒亮/闪烁</td>
<td>恒亮</td>
<td>连接正常，闪烁时表明正在传送数据</td>
</tr>
<tr>
<td>熄灭</td>
<td>熄灭</td>
<td>连接中断，没有数据传送</td>
</tr>
</tbody>
</table>

表格 5-7 数字量输入输出状态 LED 的说明

<table>
<thead>
<tr>
<th>DI/DO</th>
<th>功能说明</th>
</tr>
</thead>
<tbody>
<tr>
<td>恒亮</td>
<td>输入输出已连接并且已准备好运行</td>
</tr>
<tr>
<td>熄灭</td>
<td>输入输出没有连接或不再准备好运行</td>
</tr>
</tbody>
</table>
故障排查

5.3 其他信息

表格 5-8 技术支持

<table>
<thead>
<tr>
<th>国家</th>
<th>中国</th>
<th>德国</th>
<th>意大利</th>
<th>西班牙</th>
<th>英国</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>+33 (0) 821 801 122</td>
<td>+49 (0) 911 895 7222</td>
<td>+39 (02) 24362000</td>
<td>+34 902 237 238</td>
<td>+44 161 446 5545</td>
</tr>
</tbody>
</table>

技术支持/服务部的其他联系方式：技术支持联系方式

表格 5-9 包含详细信息的手册/操作说明

<table>
<thead>
<tr>
<th>信息难易度</th>
<th>手册/操作说明</th>
<th>内容</th>
<th>语言版本</th>
<th>下载或订购</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>入门指南</td>
<td>（本操作说明）</td>
<td>中文、德文、英文</td>
<td>手册/操作说明</td>
</tr>
</tbody>
</table>
| ++ | 操作说明 - 变频器 | 变频器安装、调试和运行，说明变频器的功能，技术数据。 | 中文、德文、英文 | 手册/操作说明可从网上下载，网址为：
| ++ | Safety Integrated | PROFIsafe 的组态，内部集成故障安全功能的安装、调试和运行。 | 中文、德文、英文 | SINAMICS 手册合集（DVD光盘） |
| +++ | 现场总线功能手册 | 配置现场总线。 | 中文、德文、英文 | 包含了所有手册和操作说明，订货号为：
• 6SL3298-0CA00-0MG0 |
| +++ | 参数手册 | 完整的参数、警告和故障表，功能图。 |
| +++ | 操作说明 - IOP | 操作面板的说明。 |