

操作指南•04/2016

CU250X-2 EPOS 功能入门指南 第二部分 编码器组态和位置系 统建立

G120,CU250S-2,CU250D-2,EPOS,基本定位,编码器,位置系统

http://support.automation.siemens.com/CN/view/zh/109481007

Copyright © Siemens AG Copyright year All rights reserved

目录

1	关于入门	指南	. 3
2	编码器		. 4
	2.1	CU250S/D-2 位置/速度编码器配置形式	. 4
	2.2	CU250S-2 编码器接口	. 5
	2.3	CU250D-2 编码器接口	. 6
3	编码器组	态	. 7
	3.1	增量编码器(HTL/TTL 信号)组态	. 7
	3.2	SSI 接口绝对值编码器组态	. 9
	3.3	SSI 接口直线型绝对值测量系统组态	10
4	位置系统	建立	12
	4.1	确定变频器中位置实际值的分辨率	12
	4.2	确定负载每转 LU 数和设置机械数据	12
	4.3	电机轴端增量编码器位置系统建立示例	13
	4.4	外部测量轮增量编码器位置系统建立示例	17
	4.5	激光测距仪直线测量位置系统建立示例	21
	4.6	多圈绝对值编码器模态轴位置系统建立示例	25
5	参考资料		28

Copyright © Siemens AG Copyright year All rights reserved

1

关于入门指南

在西门子 SINAMICS G 系列产品中,G120 的 CU250S-2 控制单元以及 G120D 的 CU250D-2 控制单元支持基本定位功能(EPOS 功能)。本入门指南通过功能介绍与实例配置结合的方式为用户介绍如何使用 G120 的基本定位功能,同时也可作为 S120 系列产品基本定位功能的参考资料。

为方便用户学习基本定位功能,本入门指南将分为 12 部分,将基本定位所包含的各种功能逐一介绍,目录参考下表:

内容	版本
第一部分 基本定位功能介绍	V1.0
第二部分 编码器组态和位置系统建立	V1.0
第三部分 限制功能和点动功能	V1.0
第四部分 回参考点功能	V1.0
第五部分 MDI 功能和监控功能	V1.0
第六部分 调试步骤与位置控制器优化	V1.0
第七部分 基本定位功能配置实例	V1.0
第八部分 使用 111 报文进行定位	V1.0
第九部分 使用 Portal 库程序基于 111 报文的定位功能	V1.0
第十部分使用 STEP 7 库程序 FB283 基于 111 报文的定位功能	V1.0
第十一部分 如何安装授权	V1.0
第十二部分 常见故障处理	V1.0

表 1-1 入门指南目录

另外 11 部分文档可在西门子下载中心搜索下载。 下载中心地址: <u>http://www.ad.siemens.com.cn/download/</u> 注意: 此文档为系列文档,尚有一部分没有发布敬请期待。

本部分内容

本部分介绍 CU250X-2 能够连接何种编码器以及如何设置编码器和建立位置系统。

本入门指南所有示例采用的控制单元和 STARTER 版本为: CU250S-2 PN V4.7.3 版本 STARTER V4.4.1 版本

注意:与本例使用 STARTER 和 CU 版本不同时可能出现配置画面不完全相同。

2

编码器

位置控制应用中离不开位置测量传感器,编码器是使用最广泛的位置测量和速度 测量传感器。

2.1 CU250S/D-2 位置/速度编码器配置形式

在使用 CU250S/D-2 基本定位功能时,位置环必须配有编码器,速度环根据性能要求可带或不带编码器,也支持位置环和速度环使用同一个编码器的形式,CU250S/D-2 支持以下三种位置/速度编码器配置形式:

表 2-1 CU250S/D-2 位置/速度编码器配置形式

2.2 CU250S-2 编码器接口

CU250S-2具有3个编码器接口,可配合使用多种编码器。最多能够同时连接两个编码器。每种接口能够连接的编码器见图2-1。

- 1. 端子接口(Terminal interface)
- 2. D-SUB 接口
- 3. Drive CliQ 接口

图 2-1 CU250S-2 编码器接口

其中 Drive CliQ 接口可以直接连接 Drive CliQ 编码器,若连接其它类型编码器必须使用编码器模块 SMC 或 SME,具体型号见表 2-2。

SMC10	SMC20	SMC3	SMC10	SMC20	SMC3
2 极旋转变 压器	sin/cos 编码器 1 Vpp	HTUTTL \$	2.极旋转变 压器	sin/cos 编码器 1 V _{pp}	HTL/TTL 🕸
多极旋转变 压器	绝对值编码器 Endat 2.1	带 TTL/HTL 信号的 SSI 器	多极旋转变 压器	绝对值编码器 Endat 2.1	带 TTL/HTL 信号的 SSI 器
	带增量信号 sin/cos 1 V _{pp} 的 SSI 编码器	无增量信 SSI 编码		带增量信号 sin/cos 1 V _{pp} 的 SSI 编码器	无增量信 SSI 编码

表 2-2 Drive CliQ 接口编码器模块 SMC 和 SME

由于 Drive CliQ 编码器和 SMC (SME) 编码器模块价格较高,实际应用中较少 使用。常用的编码器主要有增量型的 HTL 编码器和 TTL 编码器,绝对值的 SSI 编码器。

注意:不推荐使用集电极开路 NPN/PNP 类型的编码器,集电极开路类型编码器 无法与 CU250S-2 编码器接口直接连接,需要增加上拉或者下拉电阻,电阻的 阻值与编码器输出电路和变频器信号采集电路有很大关系,无法准确计算,使用 阻值不当的电阻可能会导致接口损坏或编码器信号波形较差,从而使编码器不能 正常使用。

Copyright © Siemens AG Copyright year All rights reserved

CU250S-2 三种位置/速度编码器配置形式下的编码器组合

CU250S-2 编码器组合原则请参考下表:

转速控制用编码器		1				位置控制用	目编码器	F.			
2 -		SUB-D	插头	箱	子排 【】		C	DRIVE-C	LIQ 接口	1	
		HTL/TTL	SSI	旋转变	HTL 98	通过	编码器模	映 SMC	成 SME {	夏入	DRIVE-
		编码器	編码 器	11, 25	回器	HTL/TTL 编码器	SSI编 中語	旋转变 压器	EnDat 2.1	sin/cos 编码器	CLIQ 偏時器
	无编码器	2	0	0	0	Ø	0	0	0	0	0
(HTL/TTL 编码 器	O	्रताः	-	٩	0	0	0	٢	0	٢
1	旋转变压器			0							
	HTL 编码器	٩	(3)		1	0	(3)	3	0	3	(3)
	HTL/TTL 编码 器	٩	3		٢	0	<u>844</u> 8	***		-	
	旋转变压器	٢	3		0	1 444	2.44	0	140		
	EnDat 2.1	0	٢		٩	4	12		0		242
	DRIVE-CLIQ 编码器	0	٩		۵	1775	ंतर			-	0
_	sin/cos 编码器	0	0		0	-				0	

表 2-3 CU250S-2 编码器组合

表 2-3 中的 1、2、3 对应表 2-1 中的三种位置/速度编码器配置形式。 注意: SSI 编码器不能作为电机编码器,旋转变压器不能与其他编码器混合使用。

2.3 CU250D-2 编码器接口

CU250D-2 具有 2 个编码器接口, 1 个 HTL 增量编码器接口, 1 个 SSI 绝对值编码器接口, 如图 2-2 所示。最多能够同时连接两个编码器, 分别是 1 个 HTL 增量编码器和 1 个 SSI 接口绝对值编码器。

图 2-2 CU250D-2 编码器接口

注意:不推荐使用集电极开路 NPN/PNP 类型的编码器,集电极开路类型编码器 无法与 CU250D-2 编码器接口直接连接。

Copyright © Siemens AG Copyright year All rights reserved 3

编码器组态

配置编码器需要设置的参数较多,建议使用 STARTER 调试。本节以 CU25S-2 为例介绍 HTL/TTL 增量编码器和 SSI 绝对值编码器如何配置。可以使用 STARTER 软件的调试向导配置编码器,也可以通过项目树" Configuration"功能打开 Configuration 界面右侧" Encoder data"按钮可以打开编码器配置页面。

Cuzzes d lands 2 Journ angle Brier and 1 KLIB, CUZES J PALARCTOR		Den das al SDER Enventidas et IDR	Weet.	ABIENT PROVIDENT	51) 52)
Configure drive unit	Dempaster 21-4	man oris Canward Session	Units Homorow constants - control (1)	O contigention (
 Bive satisator Insets weights 	10000	Dirigentaria	nyn i be	Market	
 ⇒ Setpointchanesi ⇒ Technology 		Sature), he Cound has carted	feetale	Correct_Heat Encoder, 1	Evale &
 B Open singl/trend long codes B Furthers D Neuron and standards 	0	Ver Derni	0130 C0250625%	Dra hare	D010 200-FL AB 8
 Technology controller Communitier 	10	Farmer variant	6705.600	Dataler storiet states	
III A Construction of the second seco					

3.1 增量编码器(HTL/TTL 信号)组态

CU250S-2 可以连接以下三种信号类型增量编码器:

- HTL(推挽输出)编码器,通过集成的 Terminal interface 端子接口或 D-SUB 接口;
- TTL(线驱动)编码器,通过集成的 D-SUB 接口;
- sin/cos(正余弦)编码器,通过增加 SMC20 编码器模块扩展。

实际应用中使用 HTL/TTL 编码器较多,设置步骤参考图 3-1。

Encoder type	Public Antonio Public	24 Level C theole C Books
Measuring system Incremental HTL	Zero marks Configuration Une zero mark/hevolute	Zeromark spacing 1024 Pulse
Supply voltage	re	<u>,</u>
(* 135-30V ()		

图 3-1 HTL/TTL 编码器设置

参数解释

Copyright © Siemens AG Copyright year All rights reserved

- ① 设置编码器类型,增量还是绝对值,不同编码器接口支持不同的选项;
- ② 选择是旋转编码器还是直线型编码器, P404.0;
- ③ 选择编码器供电电压, P404.20、P404.21、P404.22;
- ④ 设置编码器线数(每转多少脉冲), P408;
- ⑤ 选择编码器信号电平, HTL 电平(24V)或 TTL 电平(5V), P404.3;
- ⑥ 选择极性,双极性还是单极性,双极性有反相信号,单极性没有反向信号, P405.0;
- ⑦ 选择是否激活信号监控,该功能只针对 D-SUB 接口, Terminal interface 接口无该功能,该功能用于双极性信号编码器监控信号是否存在异常, P405.2;
- ⑧ 配置编码器是否有零脉冲,以及是否需要零脉冲监控,P404.12、P404.13、 P404.14;
- ⑨ 设置每转有几个零脉冲(大部分编码器每转只有1个零脉冲);

" Details" 选项卡

在编码器配置页面" Details"选项卡中,设置:

Gear ratio	Invest actual speed value
Fine resolution G1_X0ST1 G1_X0ST2 3 Bir	Measuing geer position tracking C Activates C Binlage lade C Linear cells Vinual multitum resolution Tol. vendoor 10.00

图 3-2 编码器配置页面" Details" 选项卡

- 测量变速箱速比,如果编码器不是直接连接在电机轴或负载轴上通常需要设置测量变速箱速比,P432/P433;
- ② 编码器信号细分,方波编码器细分辨率设为2位即可,设置更大的细分没有 实际意义,P418;
- ③ 速度实际值取反 P410.0,当出现速度方向错误时勾选该选项给速度值取反;
- ④ 位置实际值取反 P410.1,当出现位置方向错误时勾选该选项给位置值取反;

Copyright © Siemens AG Copyright year All rights reserved 如何判断编码器速度实际值和位置实际值方向错误,将变频器设置为 V/F (P1300=0)运行方式下,在速度模式下给定正方向 500 转的速度(速度值根 据应用中所允许的速度):

- 检查 r0061 参数,如果 r0061 显示的数值为负数,表明编码器检测的速度是负方向的;
- 检查 r0482 参数,如果 r0482 显示的数值是一直减的,表明编码器检测的位置是向负方向移动的;

当出现以上两种情况时可能由于编码器 A/B 相信号接反导致,如果不想修改编码器接线,可通过 P410.0 或 P410.1 为速度或位置值取反。

3.2 SSI 接口绝对值编码器组态

CU250S-2 D-SUB 接口可以直接连接西门子或第三方 SSI 接口绝对值编码器。 当使用西门子 SSI 编码器时直接选择编码器编号即可完成配置,如果使用第三方 编码器,首先需要知道编码器 SSI 接口的参数(编码器技术手册查询),如下:

- 编码器供电电压;
- SSI通讯的时钟频率范围;
- SSI通讯的码制(格雷码还是二进制码);
- 单圈编码器还是多圈编码器;
- 单圈分辨率以及支持多少圈(如果是多圈编码器)。

设置步骤参考图 3-3。

General Datais		
Encoder type Rotary Linear Measuring system: Absolute SSI protocol Supply voltage Supply voltage Supply voltage Supply voltage Supply	SSI protocol Code: <u>Gray Binary</u> Multitum: <u>Yes</u> No Single-tum resolution: <u>8192 Steps</u> Multitum resolution: <u>4096 Revolu</u> Baud rate: <u>100 kHz</u>	012 MSB LSB Position length in bk 25 Bits before pos. Bits before pos. Expert >>
<u>(* 135-30V</u>	Incremental tracks Putses/revolution: 9192 Track monitoring	Position value extrapolation
	OK. Cancel	Help

- 图 3-3 SSI 绝对值编码器设置
- ① 设置 SSI 编码器协议;
- ② 选择编码器类型,旋转型,P404.0;
- ③ 选择编码器电源电压, P404.20、P404.21、P404.22;

- ④ 选择编码器 SSI 通讯码制, P429.0;
- ⑤ 选择是否为多圈绝对值编码器, P404.2;
- ⑥ 设置单圈分辨率, P423;
- ⑦ 设置共多少圈(如果选择了多圈绝对值编码器), P421;
- ⑧ 设置 SSI 通讯的时钟频率, P427;
- ⑨ 系统自动计算出位置值的数据长度,本例为 25bit, P447;

3.3 SSI 接口直线型绝对值测量系统组态

在很多应用中还会经常使用 SSI 接口的直线型绝对值测量系统,例如在仓储物流和汽车行业中经常使用激光测距仪、条码认址,以及更为精密的光栅尺等等。在组态这类测量系统前同样需要知道编码器 SSI 接口的参数(编码器技术手册查询),如下:

- 测量供电电压(由于变频器编码器提供的24V电源容量有限大多数情况 下测量系统会使用外部电源);
- SSI通讯的时钟频率范围;
- SSI通讯的码制(格雷码还是二进制码);
- 直线型测量系统的分辨率,例如每单位 0.01mm;
- 位置数据的长度;
- 报文中除了位置数据是否包含报警位、故障位、奇偶校验位等等;
- 以及这些位在报文中的位置和有效电平;

设置步骤参考图 3-4。

Encoder type	SSI protocol	
C Rolary	Code: 🕞 Gray 🦵 Binary	012 MS8 LS8
· Linear		Position length in b
Measuring system:	Besolution per bit 10000 nm	Bits before pos: 0
Absolute SSI protocol	J	Bits behind pos:
	Baud rate: 100 kH:	6
	Bt position:	Logic state: Expert >>
Supply voltage	Warring bit: 0	C high active IC Low active
C 5V F Remote sense	I Enorbk 25	C High active C Low active
· 24 V 3	Parily bit: 0	C Ddd P Even
n	Monoflop time: 30 µs	
	T Double transmission	Position value extrapolation
	Filbin: 0	
	Incremental tracks	
	Grid line spacing 10000 nm	
	Track monitoring	
	1	

图 3-4 SSI 直线型绝对值测量系统设置

- ① 设置 SSI 协议;
- ② 选择编码器类型,直线型, P404.0;
- ③ 选择直线测量系统电源电压, P404.20、P404.21、P404.22;
- ④ 选择直线测量系统 SSI 通讯码制, P429.0;
- ⑤ 设置直线测量系统最小分辨率,本例设置为0.01mm,10000nm,P422;
- ⑥ 设置位置数据的长度,本例位置值为 25bit, P447;
- ⑦ 设置 SSI 通讯的时钟频率, P427;
- ⑧ 点击"Expert>>"按钮,选择报文中是否包含报警位、故障位、奇偶校验位,本例设置了一个故障位,低电平有效,并且故障位在报文的第 25bit 的位置,P434、P435、P436;
- ⑨ 设置在位置数据之后增加1位(增加了1位错误位), P446、P448;

本例中 SSI 报文长度一共 26 个位,其中第 0~24 表示位置数据,第 25 位表示 故障位。

位置系统建立

4

Copyright © Siemens AG Copyright year All rights reserved

变频器依靠编码器反馈信号计算内部位置值,编码器反馈的1个脉冲代表负载移动了多少距离(或角度)与机械系统的结构(例如减速箱的速比、测量系统的速比)有直接关系,只有正确地建立了位置系统变频器才能进行准确的定位。建立位置系统包含两个步骤:

- 1. 确定变频器中位置实际值的分辨率;
- 2. 确定负载每转 LU 数和设置机械数据。

4.1 确定变频器中位置实际值的分辨率

基本定位功能通过一个中性的长度单位 LU (Length Unit)来换算出轴的位置实际 值。 在建立位置系统前需要确定应用中所要求的位置分辨率。 即:一个长度单 位 LU 等于多少距离或角度? 例如 1LU=0.01mm 或 1LU=0.1 度等。

在选择长度单位 LU 时注意:

- 1. LU 的分辨率越高,位置控制的精度也就越高;
- 2. LU 的分辨率应小于从编码器分辨率计算得出的最大分辨率;
- **3.** 但如果选择的分辨率过高,变频器可能无法再正确显示整个轴运行范围 内的位置实际值,即:分辨率越高表示的位置范围越小,例如:
 - 如果 1LU=0.0001mm 那么最大移动范围为-214...214m 之间;
 - 如果 1LU=0.1mm 那么最大的移动范围为-214748...214748m 之间;
 变频器处理位置值采用 32 位整数,数据范围为-2147483648 ...
 2147483647LU,位置实际值上溢时,变频器会输出故障。

4.2 确定负载每转 LU 数和设置机械数据

负载每转 LU 数(P2506):通常指的是减速机输出轴转一圈负载移动的距离或 角度,而不是指电机转一圈负载移动的距离。确定 1LU 所代表的距离后,通过 机械系统的参数就能够计算出负载每转 LU 数。

设置机械数据:计算电机轴和负载轴之间总的减速比,通过 P2505 和 P2504 两 个参数设置(负载转速/电机转速= P2505/P2504)。

	机械系统	统
	滚珠丝杠	转盘
描述	负载轴 正件 家珠丝杠的节距: 6 mm	负载轴 电机
机械系统参数	速比: 1/1	速比: 1/3
	滚珠丝杠节距: 6mm	旋转角度: 360°
定义 LU	1LU = 1µm	1LU = 0.01°
负载每转的 LU	6/0.001 = 6000LU	360/0.01 = 36000LU
设置参数	P2504=1	P2504=3
	P2505=1	P2505=1
	P2506=6000	P2506=36000

计算示例见下表:

表 4-1 负载每转 LU 数和设置机械数据计算示例

4.3 电机轴端增量编码器位置系统建立示例

本节我们通过一个配置示例来介绍如何建立位置系统,示例设备如下图:

图 4-2 示例设备

示例设备:提升设备,由减速电机驱动同步轮,带动同步带上的负载上下移动。 负载重量 20kg,行程范围 1.5m。电机编码器同时作为速度编码器和位置编码器。

技术数据

电机:额定功率 0.12kw、额定转速 n1=1350rpm 减速机额定输出转速: n2=166rpm,速比 8.15 电机编码器: HTL 增量编码器 1024 脉冲 同步轮直径: 30mm

设定变频器中位置实际值的分辨率

根据应用要求确定应用中所需的 LU 分辨率 假设: 位置分辨率 1LU=0.1mm

计算负载每转 LU 数

计算同步轮旋转 1 周负载移动的距离 C = π*d = 3.14 x 30mm = 94.2mm 计算负载每转 LU 数 负载每转 LU 数 = 94.2mm / 0.1mm = 942 LU

参数设置

本示例通过 STARTER 演示参数设置过程。步骤如下:

 在线,点击项目树中"Configuration"功能打开 CU 配置页面,点击 "Wizard"按钮打开配置向导,应用类别选择"Dynamic drive control"动 态驱动控制;

2. 在功能选择页面已经激活了基本定位功能"Basic positioner"。如何激活基本定位功能请参考本系列文档的第一部分基本定位功能介绍。点击"Next"按钮完成一系列的基本配置,在此不做详细介绍;

 编码器配置页面,勾选编码器 1" Encoder1"和编码器 1 是电机编码器 "Encoder 1 as motor encoder"两个选项,本例使用端子接口" Terminal interface",选择编辑编码器数据(如果是西门子标准编码器也可以直接选 择编码器代码),点击编码器数据"Encoder data"按钮;

i encoder do you wa coder 3 coder 1 as motor en coder_1 1 coder evolucion 1 coder evolucion 1 coder evolucion 1 complex = 00 0 CPV Filmplex = 00 0	nt to use?	= Encoder . ce	2	-
oder evaluation Enonder with DENA IV Road proces Select standard	Terminal interta E-030 intertor Integrity	ce	_	•
encoder from kst	Vialaider	10		
Enter data	Encod	er data		
coder type 19 HTL A/B unipolar 18 TTL A/B R, with a 1. Singletum, 24 V 1. Multitum 4035, 24 1 10 hTL, A/B, SSI, 53 10 nm, TTL, A/B R d	iense V Ingletum Istance-coded	Cod 301 302 308 308 309 310	le number 1 0 1 2 0 9	
			D	eteils
	Enter data order type 9 HTL A/B unipola 8 TTL A/B R, with 1 5 Singlatum, 24 V Multitum 4035, 24 6, HTL A/B, 551, 5 0 mm, TTL A/B, 551, 5 0 mm, TTL A/B R of million	Enter data Encod oder type 9HTL A/B unipolat 8TTL A/B R. with sense Singletum, 24 V Multium 4095, 24 V 6, HTL, A/B, 551, Singletum 0mm, TTL, A/B R distance-coded Uniting	Enter data Encoder data oder type Cad 9 HTL A/B unipolar 301 8 TTL A/B R. with sense 302 5 Singletum, 24 V 308 6, HTL A/B, S61, Singletum 309 6, HTL A/B, S61, Singletum 309 0 mm, TTL, A/B, R distance-coded 310 mm TTL, A/B, R distance-coded 310	Enter data Encoder data coder type Code rumber 9 HTL A/B unipalat 3011 8 TTL A/B unipalat 3020 Singletum, 24 Y 3081 Multikum 4035, 24 Y 3082 6, HTL, A/B, SSI, Singletum 3090 0,mm, TTL, A/B, Ristance-coded 3193 millions SSI3

4. 打开编码器数据配置页面,根据所使用的编码器设置编码器参数,本例使用 HTL、24V电源、每转 1024 脉冲,双极性,每转 1 个零脉冲;

Generel Detailo		
Encoder type Gradop Westaning cystem The number HTL Supply vallege The Sympton Pair stars (* 135-30 v	e Createria Inc. 1024 Lacal Rubaction Information Traction confermation Boomston Deving Rubaction Transmission State Confermation Report Repor	FHL FU Uncola Figura 972 HO34 Puber
	<u> </u>	нер

5. 点击" Details" 按钮打开编码器细节配置页面,设置测量变速箱齿轮比 " Gear ratio"为 1/1 (编码器直接与电机轴连接无测量变速箱,所以为

1/1),设置编码器信号细分"G1_XIST1"=2($2^{G1_2XIST1} = 2^2 = 4$,表示4 倍频,1个A/B相信号被细分为4份,1圈1024脉冲的编码器被细分出1圈 4096个脉冲,方波编码器大于4倍的细分无实际意义);

Georatin [Encode Moto	Investor The value actual optical value The vest actual contain value
5-a social on 61_4071 201 61_40572 5 80	Meetia toj geo problem hedding 1° (+1000 C' (dograda) C' (dograda) Vitad na Kam rasolaten To: we dec

6. 下一步,为位置控制选择编码器,本例选择编码器 1" Encoder 1" 作为位置 控制的编码器;

Application class Control structure I/O configuration Drive setting	Drive: Control_Unit, DDS 0, CDS 0	
Motor Motor data Important parameters Drive functions Focoder	Encoder 1	J
Mechanics	The selection of the encoder system for the position control and the position resolution (gearbox, etc.) depends on the drive data set (DDS).	
9		
	a	

7. 下一步,设置机械数据,设置电机减速机的速比 1350/166,设置负载每转所 对应的距离 942LU(减速箱转一圈负载移动 94.2mm,1LU=0.1mm)

8. 下一步,完成配置向导。

通过以上步骤完成了编码器设置以及位置系统建立。

4.4 外部测量轮增量编码器位置系统建立示例

采用与示例 1 相近的机械结构,区别是将示例 1 设备上部的导向轮更换为测量轮, 并连接外部增量型编码器用作位置反馈。示例设备如下图:

技术数据

电机:额定功率 0.12kw、额定转速 n1=1350rpm 减速机额定输出转速: n2=166rpm,速比 8.15 电机编码器:HTL增量编码器 1024 脉冲,作为速度编码器 外部编码器:HTL增量编码器 2500 脉冲,作为位置编码器 同步轮直径:30mm 测量轮直径:40mm

设定变频器中位置实际值的分辨率

根据应用要求确定应用中所需的 LU 分辨率 假设: 位置分辨率 1LU=0.1mm

计算负载每转 LU 数

计算同步轮旋转 1 周负载移动的距离 C = π*d = 3.14 x 30mm = 94.2mm 计算负载每转 LU 数 负载每转 LU 数 = 94.2mm / 0.1mm = 942 LU

参数设置

参数设置步骤与示例1基本相同,不同之处请参考下文:

 示例 2 增加了一个外部测量编码器,需要在编码器配置页面增加编码器 2, 勾选编码器 2" Encoder 2",本例编码器 2 使用了 D-SUB 接口" D-SUB interface",点击编码器数据" Encoder data" 按钮;

Application data	Drive Cartrol_Unit DDS 0.0005.0	
Further functions VII-O configuration	Which encoder do you want to use?	1480
Drive setting:	🕼 Encedor 1	xaar 2
₩Netor ₩Netor data	I Encoder 1 as motor encoder	_
⊠inpotant paramètem ⊠Dires functione	Encoder_1 Encoder_2	
Meas servert system	Encoderevaluation D-SUB interlace	-
[]Multanits	C. Landa California Till adultura	
Summary	F Reed encoder acon	
A	Select standard Via order no. encoder from list Via order no. P Enjog data Encoder data	
	Encode type	Gode number +
	2048 HTL A/B unipolar 2048 TL A/B R, with sense SSI, Singleture, 24V SSI, Rubburn 4095, 24 V 4156, HTL, A/S, SSI, Singleturn 2000 nm, TTL, A/S R, distance-coded Https://sys.	3011 3020 3081 3062 3060 3109
		Details

2. 打开编码器数据配置页面配置编码器 2,根据所使用的编码器设置编码器参数,本例使用 HTL、24V 电源、每转 2500 脉冲,双极性,每转 1 个零脉冲;

Encoder type	Incenentalizacka Publicylicydullan R. Turk nardiara	C TTL
Keau to with Internetial HTL/TTL	Zien maks Configuration Time zoto man Assukut Parto nesk specing	2500 Pulse
Suppy voltage C 5V Remote cars (# 125-30V	•.	

点击"Details"按钮打开编码器细节配置页面,设置测量变速箱齿轮比
 "Gear ratio"为3/4(因为测量轮直径 40mm 驱动同步轮直径 30mm,驱动 轮转 4 圈测量轮转 3 圈,相当于使用了速比为 3/4 的测量变速箱),设置编 码器信号细分"G1_XIST1"=2;

Fire resolution Measuing get position hooking 02_J0371 Image of the second se	- Bear Late	inversion Investigatual speed value Investigatual position value
Vitusl multium resolution	Fireneoculion G2,J0511 3 0: G2_X1512 8 6i	Measuring geer polition tracking T dotwate C (Tonix ee) C Linear eee Vituel multium resolution
Tok window.		Tollowindow (FCC)

注意:如果编码器不是直接安装在电机轴或负载轴上需要在编码器配置"Details"页面设置测量变速箱速比。

4. 为位置控制选择编码器,选择编码器 2" Encoder 2" 作为位置控制的编码器;

5. 设置机械数据,设置电机减速机的速比 1350/166,设置负载每转所对应的距 离 942LU(减速箱转一圈负载移动 94.2mm,1LU=0.1mm)。

Application stars	Drive: Control_Unit, DDS 0, CDS 0	
Constitution Constitution Conversements Material Material Material Proposant parameters Conversements Conversements	The post control has been assigned the foll encoder U per load revolution (Snosder resolution) R1225 LU Load (productors) p2505	[Encoder_2
Chottle Maanmert vater Somer	LU per load revolution p2504 (vos. stal Lat. vd. res.) Notor revolution 1300 942	Proder PPR 2500 Fire resolution 4
	Activate modulo correction Activate modulo correction Activate vol / setot stato again at 0 LU On after Load geer poetion tracking Activate	[360000 LU
	C Received C Leave and What multium multidos Tolesnee window (10)	-

6. 下一步,完成配置向导。

通过以上步骤完成了编码器设置以及位置系统建立。

4.5 激光测距仪直线测量位置系统建立示例

本示例介如何配置 SSI 接口的绝对值直线测量传感器作为位置反馈,以自动化仓储物流系统中的堆垛机使用激光测距仪为例,其他绝对值直线测量与该配置方法原理相同。示例设备如下图。激光测距仪安装于堆垛机的下横梁上,反光板安装在轨道的一端,电机经过减速机与主驱动轮连结,主驱动轮直径 315mm。

图 4-4 堆垛机

激光测距仪简介

Copyright © Siemens AG Copyright year All rights reserved

如图 4-5 所示为某品牌激光测距仪产品,通常激光测距仪由激光测距仪本体和反光板构成距离测量系统,激光测距仪通过向反光板发射激光并测量激光的返回时间来测量距离反光板的距离,通过 SSI、PROFIBUS 或 PROFINET 等通讯接口可将测量的距离反馈给上位控制系统。

技术数据

电机:额定转速 n1=1460rpm 减速机额定输出转速: n2=172rpm,速比 8.5 堆垛机主动轮直径: 315mm 激光测距仪:作为位置编码器,SSI接口 激光测距仪 SSI接口参数:

• 时钟频率: 50 kHz ... max. 800 kHz

- 分辨率: 0.1mm (测量的最小单位)
- 码制: Gray 码
- 数据位: 24 位测量值

激光测距仪具体参数请参考相关产品技术手册。

设定变频器中位置实际值的分辨率

根据应用要求确定应用中所需的 LU 分辨率 假设: 位置分辨率 1LU=0.1mm

计算负载每转 LU 数

计算主动轮旋转1周堆垛机移动的距离

 $C = \pi^* d = 3.14 \text{ x} 315 \text{mm} = 989.6 \text{mm}$

计算主动轮每转对应 LU 数

主动轮每转 LU 数 = 989.6mm / 0.1mm = 9896 LU

参数设置

编码器 1 为增量编码器在此不做详细介绍,编码器 2 配置为位置编码器连结激光 测距仪。

 在编码器配置页面增加编码器 2, 勾选编码器 2" Encoder 2",本例编码器 2使用了 D-SUB 接口" D-SUB interface",点击编码器数据" Encoder data" 按钮;

figuration - Control_Un	it - Encoder	ation and
Productor dass	Drive: Cartrol_Unit .0DS 0.005.0	
☑Further functions ☑F:O cardigaution ☑Drive setting:	Which encoder do you want to use?	ncoder 2
₩Netor ₩Netor slata	P Encoder 1 as motor encoder	
⊠important parameters ⊠Drive functions	Encoder_1 Encoder_2	
Messurement system	Encoder evaluation D-SUB interface	
⊡Muttanis ⊡Sunnøy	C Eracita SchiDROF Chil Matura E Destructor state	
7	C Select standard	
	P Erici debi Encoder de	na l
	Enclose type 2048 HTL A/B unipole 2048 FTL A/B H, with serve SS, Singliven, 24 V 951, Hulburn 4005, 24 V 4156, HTL, A/B, SSI, Singlivan 2000 m, TTL A/B III disense-socied UserSSI YS	Code namber + 3011 3020 3081 3082 3080 3109 4922
	й Э	Details
	, Batter Next >	Heip

打开编码器数据配置页面配置编码器 2,根据所使用的编码器设置编码器参数,本例使用直线型(Linear)SSI编码器,格雷码(Gray)、分辨率
 0.1mm = 100000nm、时钟频率 100kHz、位置长度 24 位、取消信号跟踪功能;

Encode type	SSI protocol	
@ Linear	Core is all the birdy	Position length in table 24
Measuring system: Absolute SSI protocol · ·	Resolution per bit 100000 mm	Bits before pos
	Baudiale 100 kHz	pits behind pos
		Expet>
Supply votage		
		F Position value extrapolation
	Incremental tracks	
	Grid line spacing 100000 mm	

Copyright © Siemens AG Copyright year All rights reserved

点击" Details" 按钮打开编码器细节配置页面,设置编码器信号细分
 "G1_XIST1" = 2、" G1_XIST2" = 2;

$\begin{bmatrix} Cest ratio \\ \hline \\ \hline \\ Load \end{bmatrix} = \boxed{\begin{array}{c} 1 \\ \hline 1 \\ \hline \end{array}}$	Inversion Invest actual spend value Invest actual position value
G2_XIST1 G2_XIST2 G2_XIST2	Messiving gear position tracking C Activates C Rolary axis C Lanear and Virtual multium resolution Toll viewtow

23

4. 为位置控制选择编码器,选择编码器 2" Encoder 2" 作为位置控制的编码器;

 设置机械数据,设置电机减速机的速比 P2504/P2505=1460/172,设置主动 轮每转堆垛机移动的距离 P2506=9896LU(减速箱转一圈堆垛机移动 989.6mm,1LU=0.1mm),设置 10mm 对应的 LU 数 P2503=100LU (1LU=0.1mm);

(6)

✓UO configuration			- 10. 20
Drive setting Motor	The pos. control has been ass	igned the foll, encoder:	Encoder_2
Motor data Drive functiona	LU per 10 mm (encoder resolu	ition)	
✓ important pare 25 Calculation of the mo Encoder	05 7413188 LU	Screw pitch	
Measurement system		9896 LU	
C Summary		100 to per 10 mm	
P25	04 Motor revolutions	rid line spacing P2503	Fine resolution
	Activate modulo cor	rection	1
Geor	Act. pos. val. / setpt. starts ag	ain at 0 LU On after	360000 LU
	Load gear position tracking		
	C Rotary ass		
	Virtual multitum resolution:	0	

6. 下一步,完成配置向导。

1272

通过以上步骤完成了编码器设置以及位置系统建立。

4.6 多圈绝对值编码器模态轴位置系统建立示例

本示例介如何配置 SSI 接口的多圈绝对值编码器在模态轴中的应用,以转盘为例 示意图见图 4-6,下图中多圈绝对值编码器安装于电机轴上,电机转 200 圈转盘 转 1 圈,电机和负载的速比为 200/1。

工艺要求:转盘只允许单方向旋转,使用位置控制,本示例将其组态为模态轴。

图 4-6 转盘示意图

技术数据

Copyright © Siemens AG Copyright year All rights reserved

电机/负载的速比: 200/1

绝对值编码器数据:

- 时钟频率: 50 kHz ... max. 500 kHz
- 码制: Gray 码
- 单圈分辨率:每圈 8192 个位置
- 圈数: 4096 圈

设定变频器中位置实际值的分辨率

根据应用要求确定应用中所需的 LU 分辨率 假设: 位置分辨率 1LU=0.01 度(转盘转一圈有 36000 个位置)

计算负载每转 LU 数

计算转盘每转 LU 数 转盘每转 LU 数 = 360 度 / 0.01 度 = 36000 LU

参数设置

本示例使用一个编码器,编码器1配置为位置编码器连结多圈绝对值编码器。

 在编码器配置页面增加编码器 1,勾选编码器 1"Encoder 1",本例编码器 1使用了 D-SUB 接口"D-SUB interface",点击编码器数据"Encoder data" 按钮;

25

pyright © Siemens	G Copyright year	All rights reserved
Cop	ЪG	P

Service of the result of the Marking		
Appination there (Control strations (Appination) strations (Appination) (Appination	Drive Consul_Uval. DDS 0. CDS 0 Wheth screege do you work to use? 7 [Second: 1]	ncader 7
Voive data Socialist participae Over functions Neural constitutions Neural constitutions Neural constitutions Summary	Brosse_1) Encourse evaluation [1] BUB interface (*) Second with (24 Yes) Subjects from (*) Second with (24 Yes) Subjects from the second second	J
ł	Finder Stendert William - William	
	Encode type 2016 FTL A/8 unjob to 2016 TTL A/8 FL with young 251 Singlatan 24 V 251 Multium 4006, 24 V 4055 HTL A/8 STL Singlatum 4055 HTL A/8 STL Singlatum 4051 HTL A/8 STL Singlatum	Code -, yos + 901 9020 9081 9082 9093 9093 9109
-	(The bld from)	Ducab

打开编码器数据配置页面配置编码器 1,根据所使用的编码器设置编码器参数,本例使用旋转型(Rotary)SSI编码器,格雷码(Gray)、多圈(Multiturn)、单圈分辨率 8192、4096 圈、时钟频率 100kHz、取消信号跟踪功能;

General Detail	The real of the line	inc.
Encode type * Rolay Messuring polices Accutive ED protocol - Supple voltage - Supple voltage	Stranson Golt & Gran C Binet Walkam & Yes C Mo Bryle Ner monkhim Baufrate 200 Hershalter Tool Hers	The being constrained by the second s
(* 135-39V)	hoometrië had : Palestendaler Tach konkerg	🖺 Politin vike empiritien
	Cecer	

点击" Details" 按钮打开编码器细节配置页面,设置编码器信号细分
 "G1_XIST1" = 2、" G1_XIST2" = 2;

$\begin{bmatrix} \frac{Genceder}{Lood} \end{bmatrix} = \boxed{\frac{1}{1}}$	Investion Invest actual actual actual value Invest actual position value
Fine residutor 62,24511 62,24512 2 Bit 2 Bit	Measuring par politin teching Chicketine Chicketine Chicketine Universitie Meastimutham resolution Tol vioitain

4. 为位置控制选择编码器,选择编码器 1" Encoder 1" 作为位置控制的编码器;

Coloridation Color	Deve Samer, Unit 2018 COLO
A strategy of the second secon	Prevaluation of the solution speech of the pushes protect and the vertice registeries with (possible of the date and protection and protection)
9	
	F
	chek Net Gest No.

 设置机械数据,设置电机减速机的速比 P2504/P2505=200/1,设置转盘每转 LU 数 P2506=36000LU(转盘转一圈 360 度,1LU=0.01 度),激活模态轴 P2577=1,设置模态范围 36000LU(转盘转一圈对应的位置为 0...36000), 激活测量系统位置跟踪功能 P2720.0=1,旋转轴 P2720.1=0,设置虚拟圈数 P2721=102400(4096 和 200 的最小公倍数)。

注意:此例中由于编码器为4096圈的多圈绝对值编码器,编码器转200圈 负载转1圈(编码器安装于电机轴上),4096/200无法除尽,所以编码器零 点与机械零点无法重合,必须定义虚拟多圈编码器才能保证编码器零点与机 械零点重合。

Application class Control structure VO configuration Onive setting	Drive: Control Unit, DOS 0, CDS 0	
	The post control has been assigned the foll, encoder Encoder_	1
Motor Motor data	LU per load revolution (Encoder resolution)	
Disponant parametera	6553600 LU P2505	
Mitricoder Measurement system		
P2577	8192	-
	Fine resolution	es.)
	Attrate models cometras P2504	506
		-1.57
	Act pos. val / setpt stats again at 0 LU On after [10000]	576
	Rotary acis	010
	Untual multium resolution:	2721
	Tolerance window: [8 38861e+005	

下一步,完成配置向导。
 通过以上步骤完成了编码器设置以及位置系统建立

5 参考资料

基本定位功能手册

《CU250S/D-2 基本定位功能手册 V4.7.3》 https://support.industry.siemens.com/cs/cn/zh/view/109477922

其它手册

《CU250S-2 操作手册_V4.7.3》

https://support.industry.siemens.com/cs/cn/zh/view/109478829 《CU250S-2 参数手册_V4.7.3》 https://support.industry.siemens.com/cs/cn/zh/view/109477253

《CU250D-2 操作手册_V4.7.3》

https://support.industry.siemens.com/cs/cn/zh/view/109477365 《CU250D-2 参数手册_V4.7.3》

https://support.industry.siemens.com/cs/cn/zh/view/109477255