

Application Style Guide

Programming Guidelines:
SIMOTION Applications

Application Number: A4027118-A0054

General information

Application Style Guide

Version 1.02 Edition 17.12.2009 2/54

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
8

A
ll

rig
ht

s
re

se
rv

ed

A
pp

lik
at

io
ns

-S
ty

le
gu

id
e_

v1
_0

2_
en

.d
oc

We reserve the right to make technical changes to this product.

Copyright
Reproduction, transmission or use of this document or its contents is not
permitted without express written authority. Offenders will be liable for
damages. All rights, including rights created by patent grant or registration
or a utility model or design, are reserved.

General information

Application Style Guide

Version 1.02 Edition 17.12.2009 3/54

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
8

A
ll

rig
ht

s
re

se
rv

ed

A
pp

lik
at

io
ns

-S
ty

le
gu

id
e_

v1
_0

2_
en

.d
oc

General information

Note The Style Guide is not binding and does not claim to be complete
regarding the configuration as well as possible eventualities. The Style
Guide does not represent customer-specific solutions. It is only intended
to provide support for typical applications. You are responsible in
ensuring that the described products are correctly used. This Style Guide
does not relieve you of the responsibility of safely and professionally
using, installing, operating and servicing equipment. When using the
Style Guide, you recognize that Siemens cannot be made liable for any
damage/claims beyond the liability clause describe. We reserve the right
to make changes to Style Guide at any time without prior notice. If there
are any deviations between the recommendations provided in this Style
Guide and other Siemens publications - e.g. Catalogs, then the contents
of the other documents have priority.

Warranty, liability and support
We do not accept any liability for the information contained in this document.
Claims against us - irrespective of the legal grounds - resulting from the use
of the examples, information, programs, engineering and performance data
etc., described in this Style Guide are excluded. Such an exclusion shall
not apply where liability is mandatory e.g. under the German Product
Liability Act involving intent, gross negligence, or injury of life, body or
health, guarantee for the quality of a product, fraudulent concealment of a
deficiency or non-performance. Claims of the purchaser for compensation
relating to non-performance of essential contract obligations shall be limited
to foreseeable damages typically covered by a contract unless intent, willful
misconduct or gross negligence is involved or injury of life, body or health.
The above stipulations shall not change the burden of proof to your
detriment.
Copyright© 2008 Siemens A&D. It is not permissible to transfer or
copy these application examples or excerpts of them without first
having prior authorization from Siemens A&D in writing.
If you have any questions relating to this document then please send them
to us at the following e-mail address:

mailto:applications.erlf.aud@siemens.com

mailto:applications.erlf.aud@siemens.com

General information

Application Style Guide

Version 1.02 Edition 17.12.2009 4/54

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
8

A
ll

rig
ht

s
re

se
rv

ed

A
pp

lik
at

io
ns

-S
ty

le
gu

id
e_

v1
_0

2_
en

.d
oc

Qualified personnel
In the sense of this documentation qualified personnel are those who are
knowledgeable and qualified to mount/install, commission, operate and
service/maintain the products which are being used. He or she must have
the appropriate qualifications to carry-out these activities
e.g.:
• Trained and authorized to energize and de-energize, ground and tag

circuits and equipment according to applicable safety standards.

• Trained or instructed according to the latest safety standards in the care
and use of the appropriate safety equipment.

• Trained in rendering first aid.

There is no explicit warning information in this documentation. However,
reference is made to warning information and instructions in the Operating
Manual for the particular product.

Information regarding export codes
AL: N

ECCN: N

Table of Contents

Application Style Guide

Version 1.02 Edition 17.12.2009 5/54

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
8

A
ll

rig
ht

s
re

se
rv

ed

A
pp

lik
at

io
ns

-S
ty

le
gu

id
e_

v1
_0

2_
en

.d
oc

Table of Contents
1 Preliminary comment ... 7
1.1 Terminology .. 7
1.2 Scope of the document... 8

2 Programming guidelines.. 9
2.1 Using programming guidelines for customer applications 10
2.2 ST source ... 10
2.2.1 Source .. 10
2.2.2 Formatting... 10
2.2.3 Comments .. 10
2.2.4 Unit names.. 11
2.3 Name syntax for programs, variables and data types..................................... 11
2.3.1 General name syntax.. 11
2.3.2 Prefixes for derived/user-defined data types .. 15
2.3.3 Prefixes for functions, function blocks and FB instances................................ 17
2.4 Variable definitions ... 18
2.4.1 Constants / enumeration data types ... 18
2.4.2 Variables... 18
2.4.3 Initialization ... 19
2.4.4 IO variable .. 19
2.5 Programs .. 20
2.5.1 Operators.. 20
2.5.2 Expressions .. 20
2.5.3 Program control instructions ... 21
2.5.4 Error handling ... 24
2.6 Functions and function blocks .. 24
2.6.1 FC/FB parameters .. 25
2.6.2 Signal timing diagram of standardized parameters .. 29
2.7 Libraries .. 31
2.7.1 Assigning names .. 31
2.7.2 Structure ... 32
2.7.3 Programming .. 33
2.7.4 Structure of a library unit... 34
2.7.5 Programming function blocks for libraries... 34
2.7.6 Error return and diagnostics of function blocks... 44
2.7.7 Versions.. 47
2.7.8 Performance test .. 49
2.7.9 Delivery... 49
2.7.10 ST code template for an aggregate function block ... 50

3 Template .. 51

Table of Contents

Application Style Guide

Version 1.02 Edition 17.12.2009 6/54

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
8

A
ll

rig
ht

s
re

se
rv

ed

A
pp

lik
at

io
ns

-S
ty

le
gu

id
e_

v1
_0

2_
en

.d
oc

4 Documentation.. 52

Appendix ... 53

5 Revisions/author... 53

6 Literature ... 53

7 Contact partners ... 54

Preliminary comment

Application Style Guide

Version 1.02 Edition 17.12.2009 7/54

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
8

A
ll

rig
ht

s
re

se
rv

ed

A
pp

lik
at

io
ns

-S
ty

le
gu

id
e_

v1
_0

2_
en

.d
oc

1 Preliminary comment

This document applies to (customer) applications as well as libraries that
have been written in the programming languages of IEC 1131-3 (DIN EN
61131-3) Structured Text (ST), Ladder Diagram (LAD) and Function Block
Diagram (FBD) – as well as the SIMOTION programming languages Motion
Control Chart (MCC) and Drive Control Chart (DCC).

The rules and recommendations described here are binding and are
mandatory when generating standard applications and libraries.

The rules and recommendations for assigning names are valid for all
programming languages in SIMOTION. Rules and recommendations for the
source code structure, programming function blocks and libraries are
intended for programming engineers using ST.

All personnel in the various APCs (Application Centers) should use this
document.

It should always be observed that the names referring to the functionality
and data type are always clear and unique; i.e. if the same name is used
then the functionality it refers to should also be the same.

When transferring parameters, the various possibilities should be taken into
consideration – with their associated advantages and disadvantages.

• Access operations to individual structural elements of FB or FC outputs
provide better testability and improved transparency – however, they
reduce the performance.

• Transferring complete structures improves the performance but has a
negative impact on the testability.

The procedure which is the best should be decided on a case for case
basis.

1.1 Terminology

Recommendations/rules
Specifications are sub-divided into recommendations and rules.
Recommendations are intended to keep the code standard (uniform) and
are also intended to provide support and information. Recommendations
should in principle always be followed; however, there are certainly
situations where a recommendation is not followed – whether it be relating
to efficiency, or because the code would be able to be more easily read.
Contrary to recommendations, rules should always be followed (they are
binding).

Customer application
A customer application is a specific application for a certain user and is not
provided by SIEMENS AG as product.

Preliminary comment

Application Style Guide

Version 1.02 Edition 17.12.2009 8/54

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
8

A
ll

rig
ht

s
re

se
rv

ed

A
pp

lik
at

io
ns

-S
ty

le
gu

id
e_

v1
_0

2_
en

.d
oc

1.2 Scope of the document

In addition to applications, users can also access SIMOTION system
functions that are used within the framework of applications.

Note The rules and recommendations described in this document do not apply
to these system functions.

Programming guidelines

Application Style Guide

Version 1.02 Edition 17.12.2009 9/54

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
8

A
ll

rig
ht

s
re

se
rv

ed

A
pp

lik
at

io
ns

-S
ty

le
gu

id
e_

v1
_0

2_
en

.d
oc

2 Programming guidelines

Programming guidelines are used to obtain a standard/uniform code that
can be more easily serviced and re-used. Not only this, errors (bugs) can
be identified at an early stage (e.g. by the compiler) and avoided.

The source code should have the following properties:

• A standard and unified style

• Should be able to be easily read and understood

A certain appearance should initially be maintained regarding serviceability
and transparency of the source code. Optical effects – e.g. a standard
number of blanks before the comma – only play an insignificant role
regarding the software quality. It is far more important for example, to find
and select rules that support development engineers in the following way:

• Avoid typing errors and careless mistakes that the compiler then
incorrectly interprets.

Objective: The compiler identifies as many errors as possible.

• Support the code for identifying and resolving program errors and bugs;
for instance, by using prefixes to more simply identify type
incompatibilities

Objective: The code indicates problems at an early stage.

• Standardize standard applications and libraries

Objective: The program code is more easily learned and the reusability
of program code is increased

• Modularization

Objective: Increasing the level of transparency

Selectively use of sub-functions and simple combination of different
modules by encapsulating and clearly separating sub-functions

Define clear and unique interfaces

• Increase the serviceability and ongoing development
Objective: Changes to the program code in the individual modules, that
can involve functions/function blocks/programs or units in libraries or in
the projects – should have a minimum impact on the total
application/total library.
Different programming engineers should be able to make changes to
program code in the individual modules.

Rule
Each time a rule is violated it must be documented!

Programming guidelines

Application Style Guide

Version 1.02 Edition 17.12.2009 10/54

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
8

A
ll

rig
ht

s
re

se
rv

ed

A
pp

lik
at

io
ns

-S
ty

le
gu

id
e_

v1
_0

2_
en

.d
oc

 2.2

2.1 Using programming guidelines for customer applications

Rule
Customer's requirements have priority for customer applications. If the
customer requests changes or deviations from these programming
guidelines, then this has first priority. This must also be documented in
writing. Rules defined by customers must be documented in the source text
in a suitable form.

2.2 ST source

2.2.1 Source

Rule
Every ST source must be documented. The template from /4/ should be
used.

Recommendation
No language-specific special characters should be used, e.g. ä, ö, ü, à, etc.

.2 Formatting

Rule
Tab characters are not permissible in the source text. Indentations should
be made using four blanks. When using the internal ST Editor, this is done
automatically.

Recommendation
For an improved readability, the line length of the source text in printed
form should be limited to 80 characters.

Recommendation
Various ST code sections with associated functionality should be optically
separated using a line break.

2.2.3 Comments

A distinction should be made between two types of comments:

• Strategic comments (these describe what a function or a code section
does)

• Tactical comments (these describe the code of an individual line)

Programming guidelines

Application Style Guide

Version 1.02 Edition 17.12.2009 11/54

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
8

A
ll

rig
ht

s
re

se
rv

ed

A
pp

lik
at

io
ns

-S
ty

le
gu

id
e_

v1
_0

2_
en

.d
oc

Recommendation
A strategic comment should be located at the beginning of the
corresponding code section.
A tactical comment, if possible, should be located at the end of the code
line – otherwise in front of the associated code line.

Rule
Comments in ST start with //. The comment is started after the slash
symbols without any blanks.
Reason: For test purposes, complete blocks can be simply removed using
(*..*).

2.2.4 Unit names

Rule
Each unit contains a prefix. This prefix is assigned after the POUs
(Program Organization Units) or declared data used in the unit.

Table 2-1: Prefixes for unit names

Prefix Significance Example:

a Version unit in libraries, name for the version unit is
always aVersion (use of the letter a so that this Unit
is located at the uppermost position in the project
navigator

aVersion

c Unit for global constants cConst
d Unit that is only used to declare global type

definitions and variables
dGlobal

f Unit that is only used for functions and function
blocks

fWinder

p Unit that is only used for programs pCrossX
x Mixed unit with data (type definitions, global

variables, constants), functions/ FBs and/or
programs

xMisc

Rule
The use of the prefix x and therefore the use of data, functions/ FBs and
programs – in a unit is permitted to ensure extremely compact Units with a
low code scope and/or a low number of POUs.

2.3 Name syntax for programs, variables and data types

2.3.1 General name syntax

The syntax applies to:

• Identifiers of variables and constants

Programming guidelines

Application Style Guide

Version 1.02 Edition 17.12.2009 12/54

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
8

A
ll

rig
ht

s
re

se
rv

ed

A
pp

lik
at

io
ns

-S
ty

le
gu

id
e_

v1
_0

2_
en

.d
oc

• Identifiers of derived data types (array, struct, enum) and their
associated elements

• Identifiers of programs, functions and function blocks

• Identifiers of parameters of functions and function blocks

It is important to distinguish between names and identifiers. The name is
part of an identifier that describes the particular meaning.

The identifier comprises the following

• Prefixes (list as shown in Table 2-2 and Table 2-3

• The name

Rule
The leading underscore character in the identifiers of functions and function
blocks is reserved for SIEMENS system functions.
Leading underscore characters should not be used in the application itself.

Rule
Prefixes are specified and must be compliant with the specifications as
listed in Table 2-2 and Table 2-3. The reason for this is to ensure that the
code has a standard appearance.

Rule
Identifiers where the only difference is either upper or lower case may not
be used. Once the notation of an identifier has been selected, then it is kept
in all of the sources.

Recommendation
The name in the identifiers should be in English. The name indicates the
meaning and purpose of the particular identifier in the context of the source
code.

Rule
Prefixes are not used for input and output variables of FCs/ FBs. If
structures are used for input and output variables, then the individual
elements have prefixes.

Rule
Constants do not contain a prefix.

Rule
The name in the identifiers starts with a lower case letter – unless prefixes
are being used.

Programming guidelines

Application Style Guide

Version 1.02 Edition 17.12.2009 13/54

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
8

A
ll

rig
ht

s
re

se
rv

ed

A
pp

lik
at

io
ns

-S
ty

le
gu

id
e_

v1
_0

2_
en

.d
oc

Rule
Names, that comprise several words, are written together and each word
that has a word in front of it or a prefix, starts with an upper case letter; the
rest of the word is written in lower case letters.
Exception: Constants and enums (enumerations)

Example:
Local variable: rMaxLength

Rule
Terms (e.g. names of variables and functions) that are defined in the
system are not permissible.

Recommendation
The maximum length of a name is 32 characters.

Rule
The identifier of functions, function blocks and programs should be
structured according to the following schematic [Operation] Object
[Attribute].

Example:
Identifier: FCSwapWordBigEndian
Name: SwapWordBigEndian
Operation: Swap
Object: Word
Attribute: BigEndian

Rule
Separators (underscore characters) in the prefix (memory location/data
type) and between the prefix and identifier are not permitted.

Rule
For prefixes, the sequence is the memory location followed by the data type.
Table 2-2: Save location

Prefix Save location/Visibility

without Local variable
g Global variable defined

 as global device variable
 in the INTERFACE part of a UNIT (can be exported)
 in the IMPLEMENTATION part of a UNIT

i In the I/O symbol browser (peripheral access, inputs) or
declared using an absolute identifier (VAR AT)

q In the I/O symbol browser (peripheral access, outputs) or

Programming guidelines

Application Style Guide

Version 1.02 Edition 17.12.2009 14/54

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
8

A
ll

rig
ht

s
re

se
rv

ed

A
pp

lik
at

io
ns

-S
ty

le
gu

id
e_

v1
_0

2_
en

.d
oc

Prefix Save location/Visibility
declared using an absolute identifier (VAR AT)

r retentive data

The prefixes in [] brackets are an alternative approach. However, within
any one project, the selected procedure must be kept uniform.

Table 2-3: Data type

Prefix [Alternative] Data types (identifiers) Value range

bo BOOL Bit (1) TRUE, FALSE
b8 [b] BYTE Byte (8) 16#00...16#FF
b16 [b] WORD Word (16) 16#0000...16#FFFF
b32 [b] DWORD Double word (32) 16#0000 0000...16#FFFF

FFFF
i8 [i] SINT Short integer number (8) -128...127
u8 [u] USINT Unsigned short integer

number (8)
0...255

i16 [i] INT Integer number (16) -2**15...2**15 -1
u16 [u] UINT Unsigned integer

number (16)
0...2**16 -1

i32 [i] DINT Double integer number
(32)

-2**31...2**31 -1

u32 [u] UDINT Unsigned double integer
number (32)

0...2**32 -1

r32 [r] REAL Floating-point number
(32)

Refer to IEC 559

r64 [r] LREAL Long floating point
number (64)

Refer to IEC 559

a ARRAY Array
e ENUM Enumeration
s STRUCT Structure
sg STRING String
to TO reference

Example:
 gasFeeder Global array of a feeder structure

Table 2-4: Pre-defined data types

Prefix Pre-defined data types (identifiers) Value range

t TIME Duration Refer to SIMOTION
d DATE Date Refer to SIMOTION

Programming guidelines

Application Style Guide

Version 1.02 Edition 17.12.2009 15/54

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
8

A
ll

rig
ht

s
re

se
rv

ed

A
pp

lik
at

io
ns

-S
ty

le
gu

id
e_

v1
_0

2_
en

.d
oc

Prefix Pre-defined data types (identifiers) Value range

t TIME_OF_ Refe od DAY Time r to SIMOTION
dt AND_TIME time DATE_ Date and Refer to SIMOTION

2.3.2 eriv r-defined data types

Recommendation
a user-defined data type

Prefixes for d ed/use

The prefix e, s, a is set in front of the identifier of
and the 'type' suffix attached.

Table 2-5: User-defined data types

User def. data types (identifier)

a< Name > Type TYPE Array
e< Name > Type TYPE Enumeration type
s< Name > Type Structure TYPE

Programming guidelines

Application Style Guide

Version 1.02 Edition 17.12.2009 16/54

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
8

A
ll

rig
ht

s
re

se
rv

ed

A
pp

lik
at

io
ns

-S
ty

le
gu

id
e_

v1
_0

2_
en

.d
oc

Example:
TYPE

 //array

ar32PositionType : ARRAY[0..MAX_NUM_ELEM - 1] OF REAL;

//enum

eColorType : (RED, GREEN, LIGHT_BLUE);

//structure

sMixtureType : STRUCT

 i16Elem1 : INT := 1;

 i16Elem2 : INT := 2;

 END_STRUCT;

END_TYPE

VAR_GLOBAL

 gar32Position : ar32PositionType;

 geColor : eColorType;

 gsMixture : sMixtureType;

END_VAR

Rule
The elements of enumerations (enums) are written in upper case letters. If
they comprise individual words, then they are separated by an underscore
character (such as constants).

Rule
Prefix und identifier are not separated by an underscore character.

Recommendation
Array limits start with 0 and end with "constant – 1".

Recommendation
Type definitions should be made in the interface section in order to ensure
unique and clear definitions within the particular device.

Programming guidelines

Application Style Guide

Version 1.02 Edition 17.12.2009 17/54

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
8

A
ll

rig
ht

s
re

se
rv

ed

A
pp

lik
at

io
ns

-S
ty

le
gu

id
e_

v1
_0

2_
en

.d
oc

 2.3

Recommendation
Type definitions are not applied to elementary data types.

Example:
TYPE

r64PositionType : LREAL; //not ok

END_TYPE

TYPE

 //array

ar32PositionType : ARRAY[0..MAX_NUM_ELEM - 1] OF REAL;

 eColorType : (RED,GREEN,LIGHT_BLUE); //enum

 sMixtureType : STRUCT //struct

 i16Elem1 : INT := 1;

 i16Elem2 : INT := 2;

 END_STRUCT;

END_TYPE

.3 Prefixes for functions, function blocks and FB instances

Table 2-6: Prefixes for functions and function blocks

Prefix Type

FC Function
FB Function block

Recommendation
The name of an FB instance should include a reference to the FB as well
as the actual use

VAR
FBBottleCheckOutlet : FBBottleCheck;
FBRTC1 : RTC;

END_VAR

Programming guidelines

Application Style Guide

Version 1.02 Edition 17.12.2009 18/54

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
8

A
ll

rig
ht

s
re

se
rv

ed

A
pp

lik
at

io
ns

-S
ty

le
gu

id
e_

v1
_0

2_
en

.d
oc

2.4 Variable definitions

2.4.1 Constants / enumeration data types

Rule
The names of constants are always written using upper case letters. In
order to be able to identify individual words or abbreviations, underscore
characters should be inserted between the individual words or
abbreviations.

Recommendation
Direct numerical values in the code should be avoided. If at all possible,
use constants.

Examples
VAR CONSTANT
 MAX_INDEX : INT := 99; // max. index of array
END_VAR

TYPE
 eModeType : (BUSY,FREE,RUN); //user defined
END_TYPE

VAR
 eMode : eModeType; //user defined
END_VAR

IF (eMode = BUSY) THEN //use

2.4.2 Variables

Rule
When declaring variables, the variables are indented and are then
separated by a line break.

//global variables-------------------------------
VAR_GLOBAL
 gtSetTime : TIME := T#10d_5m_3s_200ms;
 //user defined
 gsMixture1 : sMixtureType; //struct
END_VAR

//local variables--------------------------------
VAR_TEMP

//elementary types
 u32RetValue : UDINT;

r64MaxVelocity : LREAL := 1.1234E002;

Programming guidelines

Application Style Guide

Version 1.02 Edition 17.12.2009 19/54

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
8

A
ll

rig
ht

s
re

se
rv

ed

A
pp

lik
at

io
ns

-S
ty

le
gu

id
e_

v1
_0

2_
en

.d
oc

 //references of TO-types
 toTransportAxis : DriveAxis;
 toCrossAxis : FollowingAxis;
 //derived types
 atoAllAxes : ARRAY[0..MAX_NUM_AXES - 1] OF

DriveAxis;
END_VAR

2.4.3 Initialization

Recommendation
Variables are only initialized if a default value that differs from the type-
specific default value is required. If at all possible, the initialization should
be made when defining the variable for runtime reasons.

Recommendation
The initialization (assigning constant data) is realized in the usual
representation of its data type (literal).

Example:
 b16Mask1 : WORD := 16#01; //not ok
 b16Mask2 : WORD := 16#0001; //ok
 b8Mask3 : BYTE := 2#0000_1010; //ok
 b32Mask4 : DWORD := 5; //not ok
 b32Mask5 : DWORD := 16#0000_0005;//ok
 r32Temp1 : REAL := 40; //not ok
 r32Temp2 : REAL := 40.0; //ok
 i16Counter1 : INT := 16#00; //not ok
 i16Counter2 : INT := 10; //ok

2.4.4 IO variable

Recommendation
Access operations to the process image of the SIMOTION device using
absolute identifiers should be kept to a minimum in order to remain portable.
The assignment should be made at a central location.

Example:
 //declaration

boJogPos AT %IX10.1 : BOOL;
b8Port1 AT %IB1 : BYTE;

i16ToolKey AT %IW10 : INT; //cast possible
i32ProgNum AT %QD10 : DINT;

//access to I/O-Image
b8Image := b8Port1; //ok
b8Image := %IB1; //not ok

Programming guidelines

Application Style Guide

Version 1.02 Edition 17.12.2009 20/54

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
8

A
ll

rig
ht

s
re

se
rv

ed

A
pp

lik
at

io
ns

-S
ty

le
gu

id
e_

v1
_0

2_
en

.d
oc

2.5 Programs

Rule
Each program is described in a descriptive header in the program code.
The description contains the following points:

– Description of the functionality

– Description of the task assignment

– Requirements of the target system

– Program version together with the author and date

The template for the descriptive header is provided in Chapter 3.

2.5.1 Operators

Recommendation
A blank is located before and after binary operators and the assignment
operator - as long as this does not have a negative impact on the
understanding the sense.

Example:
i8SetValue := i8SetValue1 + i8SetValue2; //ok
i8SetValue:=i8SetValue1+i8SetValue2; //not ok

2.5.2 Expressions

Recommendation
Expressions should always be set in brackets in order to clearly show the
sequence of interpretation.

Example:
boSetFlag := (r32ActualPosition < 100.0) OR
 (r32ActualPosition > 150.0);

Programming guidelines

Application Style Guide

Version 1.02 Edition 17.12.2009 21/54

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
8

A
ll

rig
ht

s
re

se
rv

ed

A
pp

lik
at

io
ns

-S
ty

le
gu

id
e_

v1
_0

2_
en

.d
oc

2.5.3 Program control instructions

Recommendation
For complex expressions it makes sense to "highlight" each "sub-condition"
using a line break. This means that also transparent and clear comments
can be made.

Recommendation
A strict demarcation should be maintained between the condition part and
the instruction part.

Rule
If one line is not sufficient for the complete condition, then Boolean logic
operations are written to the right at the end of the line.

Conditions in IF instructions are indented by four blanks, THEN is located in
its own dedicated line at the same height as IF.

For IF conditions in a single line THEN is written at the end of the line.

For each new structure level, the bracket character is offset by a blank so
that brackets of a particular structure level are indented by the same
amount.

Example:
IF (FCDriveStatus() = OK) AND //comment ...
 ((boOldDrive XOR boActDrive) OR //comment ...
 (boOldPower XOR boActPower)) //comment ...
THEN
 ; //statement
ELSE
 ; //statement
END_IF;

Rule
A CASE instruction must always show an ELSE branch in order to be able
to signal errors that occur during the runtime.

CASE i16Select OF

 1: //comment
 ;//statement
 4: //comment
 ;//statement

ELSE
 ;// generate error message
END_CASE;

Programming guidelines

Application Style Guide

Version 1.02 Edition 17.12.2009 22/54

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
8

A
ll

rig
ht

s
re

se
rv

ed

A
pp

lik
at

io
ns

-S
ty

le
gu

id
e_

v1
_0

2_
en

.d
oc

Programming guidelines

Application Style Guide

Version 1.02 Edition 17.12.2009 23/54

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
8

A
ll

rig
ht

s
re

se
rv

ed

A
pp

lik
at

io
ns

-S
ty

le
gu

id
e_

v1
_0

2_
en

.d
oc

Rule
Each instruction in the main body of a control structure is indented.

Example:
 IF statement

//---------------
IF boCondition THEN
 ;//statement
 IF boCondition THEN
 ;//statement
 END_IF;
ELSE
 ;//statement
END_IF;

Example:
CASE statement

 //-------------------
CASE i16Select OF
 1: //comment
 ;//statement
 2: //comment
 ;//statement
ELSE
 ;//statement
END_CASE;

Example:
FOR statement

 //---------------
FOR i16Index := 0 TO MAX_NUMBER - 1 DO
 ;//statement
END_FOR;

Example:
WHILE statement

//---------------
WHILE boCondition DO
 ;//statement
END_WHILE;

Example:
REPEAT statement

//---------------
REPEAT
 ;//statement
UNTIL boCondition END_REPEAT;

Programming guidelines

Application Style Guide

Version 1.02 Edition 17.12.2009 24/54

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
8

A
ll

rig
ht

s
re

se
rv

ed

A
pp

lik
at

io
ns

-S
ty

le
gu

id
e_

v1
_0

2_
en

.d
oc

2.5.4 Error handling

Rule
If functions or function blocks provide error codes, then these must always
be evaluated.

2.6 Functions and function blocks

Recommendation
The return type of a function FC should always be declared.

Example:
FUNCTION FCSwapWord : WORD //description

Recommendation
Only a RETURN instruction should be used if the processing of
function/function block is to be prematurely ended. There is only one return
instruction for each function/function block in order to have a controlled exit
point. If this rule is consciously not followed (e.g. as a result of complex
control structures) then this must be documented in detail.

Recommendation
The parameters of a function/block must be specified when called in the
sequence of the declaration. If feasible - default values should be specified
in the blocks because it may be possible to make the call shorter and more
transparent.

Recommendation
For a call in ST, a new line should be started for each parameter.

Recommendation
A lot of input parameters (call-by-value) should - as far as possible - be
encapsulated in a structure (for more efficient copying). For simpler use in
LAD / FBD, individual variables that frequently change their value – e.g.
control variables – can be set-up as individual variables.

Programming guidelines

Application Style Guide

Version 1.02 Edition 17.12.2009 25/54

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
8

A
ll

rig
ht

s
re

se
rv

ed

A
pp

lik
at

io
ns

-S
ty

le
gu

id
e_

v1
_0

2_
en

.d
oc

Note An argument transfer as in-out parameter (VAR_IN_OUT) is efficient from
the runtime perspective ("call-by-name").

e.g. to transfer higher data quantities

Example:
//structure within VAR_IN_OUT
FBBottleCheckOutlet(
 formulaInOut := sFormula4711
 ,vectorInOut := sMatrix2011[8]
 ,...

);

2.6.1 FC/FB parameters

Rule
If parameters with a standard significance in regard to identifier and
function are required according to PLCopen V1.1, then the appropriate
standard identifiers should be used (Table 2-7). In addition, for
functions/function blocks that can abort themselves the reset input to abort
and the resetActive output to display an active abort (abort) are defined.
These two variables are optional and are not defined in PLCopen V1.1.

Recommendation
If the programmer uses the VAR_INPUT parameter reset, then the
VAR_OUTPUT parameter resetActive can be used. This parameter signals
that the reset response is still present (e.g. the axis is presently being
stopped and has still not come to a standstill. If the functionality can be
stopped in one clock cycle (e.g. to withdraw a communication relationship),
then resetActive is only present for one cycle.

Rule
Contrary to PLCopen, instead of the inVelocity, inGear and inSync term,
done is always used.

Recommendation
If the inGear and inSync names are used for Boolean output variables, then
these should have the same behavior as the outputs with these identifiers
of the SIMOTION system function, _MC_GearIn and _MC_CamIn (set to
TRUE as long as the axis runs in synchronism with the master axis).

Rule
If the programmer uses the VAR_INPUT parameter execute, the
VAR_OUTPUT parameter done must be used.

Programming guidelines

Application Style Guide

Version 1.02 Edition 17.12.2009 26/54

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
8

A
ll

rig
ht

s
re

se
rv

ed

A
pp

lik
at

io
ns

-S
ty

le
gu

id
e_

v1
_0

2_
en

.d
oc

Rule
Prefixes are not used for the FC and FB parameters. The reason for this is
to remain in conformance with the SIMOTION parameter names and the
PLCopen specifications.

Rule
Prefixes should be used for structure elements within FC and FB
parameters.

Rule
For parameter names that comprise several words, the sequence of the
words should be selected the same as the spoken word. The names of
parameters start with lower-case letters. Names, that comprise several
words, are written together and every word that has a word in front of it
starts with an upper case letter.

Programming guidelines

Application Style Guide

Version 1.02 Edition 17.12.2009 27/54

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
8

A
ll

rig
ht

s
re

se
rv

ed

A
pp

lik
at

io
ns

-S
ty

le
gu

id
e_

v1
_0

2_
en

.d
oc

The following parameters involve standard parameters:
Table 2-7: Standard parameters

Signal standard
function in

conformance with
SIMOTION

Significance

INPUT parameter
execute

or

enable

The function is started with a signal edge

The function is started with a signal level

reset Optional to initialize or reset internal data, premature
interruption of the function/request
Signal level active, processing blocked

OUTPUT parameter
done Function or request was successfully executed
busy Function or request is being processed/issued
valid optional compatibility to PLCopen (buffered mode of function

blocks), same behavior of signals like busy output
commandAborted Function or task was aborted from outside of the FB

Example: Function is still positioning the axis - but the axis is
stopped at another position in the user program

valid Only used for enable input
Set if enable = TRUE and there is no fault

resetActive Optional and only when using the reset input: After selecting
reset, function stop/request still not completed

error Error has occurred
errorID Error type (error ID)

Note If simulataneous use of output active and the enumeration
enumActiveInactive the compiler will report an error. For avoidance e.g.
when checking the state of a TO use the following notation: <stateOfTO>
= EnumActiveInactive#ACTIVE.

Programming guidelines

Application Style Guide

Version 1.02 Edition 17.12.2009 28/54

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
8

A
ll

rig
ht

s
re

se
rv

ed

A
pp

lik
at

io
ns

-S
ty

le
gu

id
e_

v1
_0

2_
en

.d
oc

Example:
Fig. 2-1: LAD representation

 FB<FunctionBlockName>

BOOL execute done BOOL
BOOL reset busy BOOL

 active BOOL
 commandAborted BOOL
 error BOOL
 errorID DWORD
 resetActive BOOL

Programming guidelines

Application Style Guide

2.6.2 Signal timing diagram of standardized parameters

Note If the execute parameter is withdrawn before the done bit, then the done
bit should only be set for one cycle.

Fig. 2-2: Signal timing diagram of a function block with execute input

Version 1.02 Edition 17.12.2009 29/54

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
8

A
ll

rig
ht

s
re

se
rv

ed

A
pp

lik
at

io
ns

-S
ty

le
gu

id
e_

v1
_0

2_
en

.d
oc

1

0

1

0

1

0

1

0

1

0

case 1 case 2

execute
(IN)

reset
(IN)

busy
(OUT)

done
(OUT)

error
(OUT)

case 3 case 4

command
Aborted
(OUT)

1

0

5)

2)

3)

4)

1)

6)

1

0

reset
Active
(OUT)

case 5 case 6
a) The functionality of the FB is not stopped with a falling signal edge at execute.

b) If execute is already 0, the done, error and commandAborted are only present
for 1 cycle.

c) With a rising signal edge at reset, the FB function is stopped and resetActive is
set - busy, done, error and commandAborted – if active – are reset. resetActive
remains set as long as the stop response is present (e.g. axis stop, aborting the
communication relationship)

d) Done, error and commandAborted are reset with a falling signal edge at
execute.

Programming guidelines

Application Style Guide

e) reset is set to TRUE for one clock cycle. resetActive remains set until the
function/task of the function blocked was stopped. If a rising signal edge is
identified at execute - and resetActive is active - then error is set. The error bit
is withdrawn again for a falling signal edge of execute.

Fig. 2-3: Signal timing diagram of a function block with enable input

Version 1.02 Edition 17.12.2009 30/54

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
8

A
ll

rig
ht

s
re

se
rv

ed

A
pp

lik
at

io
ns

-S
ty

le
gu

id
e_

v1
_0

2_
en

.d
oc

a) With a falling signal edge at enable or error to TRUE, valid is reset and all FB

functions are stopped.

b) valid is set again after the cause of the error has been removed and
acknowledged.

c) With a rising signal edge at reset, the FB functions are stopped and resetActive
is set, valid is FALSE for resetActive.

d) Valid at TRUE means that the block has been activated, there is no error and
therefore the FB outputs are valid.

Programming guidelines

Application Style Guide

Version 1.02 Edition 17.12.2009 31/54

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
8

A
ll

rig
ht

s
re

se
rv

ed

A
pp

lik
at

io
ns

-S
ty

le
gu

id
e_

v1
_0

2_
en

.d
oc

2.7 Libraries

The various rules and recommendations when programming libraries are
specified in this Chapter. The rules relating to source code and variable
names, listed in the previous chapters, are binding for standard libraries.

Functions for standard applications should be encapsulated in functions
and function blocks and saved in a separate dedicated library.

2.7.1 Assigning names

Recommendation
The name of a library includes the prefix L (e.g. LCarton). No underscore
characters are used. The maximum character length for a library name is
limited to 8 characters.

Background:

This restriction applies to keep names small.

Rule
All of the functions/function blocks/type definitions exported from a library -
as well as constants - have, as prefix, the name of the library. Type
definitions that have been exported initially include the prefixes defined in
Table 2-2 and Table 2-3 followed by the name of the library.

This prevents the same names being assigned as for other libraries. The
use of name spaces is not permitted as the longer names would make
handling with LAD / FBD / MCC more difficult.

Example:
Table 2-8: Example for assigning a name for library LExample

Type Name according to the style guide

Library LExample
Date type, enumeration eLExample<Name>Type
Data type, array aLExample<Name>Type
Data type, structure sLExample<Name>Type
Data type, array of a structure asLExample<Name>Type
Exported function block FBLExample<Name>
Exported function FCLExample<Name>
General constant LEXAMPLE_<NAME>
Constant for the error code LEXAMPLE_ERR_<NAME>

Rule
Each unit of a library contains one prefix. The rules from Chapter 2.2.4
apply.

Programming guidelines

Application Style Guide

Rule

Each library contains one unit for the version history. This unit has the
name aVersion.

Rule
Extensive type definitions and constants are declared in separate,
dedicated units.

Rule
There are a maximum of two units to define type definitions in a library that
can be exported from the library. A know-how protected unit contains the
dProtected name and an open unit has the dPublic name.

Rule

Version 1.02 Edition 17.12.2009 32/54

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
8

A
ll

rig
ht

s
re

se
rv

ed

A
pp

lik
at

io
ns

-S
ty

le
gu

id
e_

v1
_0

2_
en

.d
oc

There are a maximum of two units to define global constants in a library.
One know-how protected unit contains the cProtected name and an open
unit, the cPublic name.

Note The name for units for data and constant definitions are only defined for
libraries. A name for units with data or constant definitions in the
application is not specified with the exception of the prefix (refer to
Chapter 2.2.4).

Example:
Fig. 2-4: Example for the prefixes of library units

2.7.2 Structure

Rule
A library is created for each application (e.g. DPV1 services) or machine
type (tubular bagging machine) or machine types that are very similar from

Programming guidelines

Application Style Guide

Version 1.02 Edition 17.12.2009 33/54

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
8

A
ll

rig
ht

s
re

se
rv

ed

A
pp

lik
at

io
ns

-S
ty

le
gu

id
e_

v1
_0

2_
en

.d
oc

erspective (e.g. vertical and horizontal tubular bagging
machines).

Rule

thin the library, then the library name is not included in the
identifier. General functions/function blocks are saved as follows,
depending on the scope:

ks are not exported.

e

k of this
 to the internal

Rule
ept to a minimum.

Rule
Know-how protection is not applied to a complete library, only to the
individual units. This means that it is possible to subsequently modify the

Background:

ON-

Rule
ontain both know-how protected as well as also non know-

apted (size of ARRAYs)
that are processed by functions where the know-how is protected, without
obtaining access to the source code.

2.7.3

Rule

allows more complex algorithms to be efficiently programmed.

a technological p

Functions/function blocks that are used more than once within the library
are general function/function blocks. If these functions/function blocks are
only used wi

• Small functions/function blocks are linked into each unit of the library.
This therefore increases the update time & costs. The reason for this is
that each unit must be updated when it is changed. However,
documentation does not have to be generated as these
functions/function bloc

• If general functions/function blocks are too extensive both regarding th
number (quantity) or code, then they are saved in the library of a
separate, dedicated unit. Every exported function/function bloc
general unit must be documented. However, a reference
use in the documentation is sufficient.

• Central and higher-level functions/function blocks should be saved in
their own separate libraries to make it simpler to reuse them.

The number of units of a library should be k

device version.

For a know-how protected library, the platform as well as the SIMOTI
version cannot be changed without a password.

A library can c
how protected units.

This therefore allows e.g. data definitions to be ad

Programming

Libraries are preferably created in the ST programming language. This

Programming guidelines

Application Style Guide

Version 1.02 Edition 17.12.2009 34/54

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
8

A
ll

rig
ht

s
re

se
rv

ed

A
pp

lik
at

io
ns

-S
ty

le
gu

id
e_

v1
_0

2_
en

.d
oc

s simpler functions or logic components, then these
can be programmed in graphic languages.

Rule
e suitable

es.

mendation

E)

und: When using motion tasks with endless loops it is not possible

2.7.4

Rule

 a unit. This therefore
ed.

Local data is preferably declared in the IMPLEMENTATION part of a unit
(unit global) or in the POUs.

Rule
 instances) that prevent or restrict the

on

Exception:

Global definitions are permitted in libraries and/or functions/function blocks

2.7.5 ries

Rule

es that
are used remain constant (e.g. by saving the input parameter in a help
variable and inhibiting these help variables from being written to as long as
a value change is not permitted).

If a library also contain

The functions/function blocks that have been generated must b
for use in LAD/FBD charts. The handling of the function block should be
kept as simple as possible for users – even if this requires a somewhat
higher level of programming time & resourc

Recom
The function blocks should be programmed for cyclic operation. It is
preferable that the background task is used for the task to be processed.
This is also the reason that the use of an endless loop (e.g. WHILE TRU
should be avoided for cyclic functionalities in a motion task.

Backgro
to download when the CPU is in the RUN mode.

Structure of a library unit

Only the structures, functions and function blocks that are required for
export are declared in the INTERFACE section of
allows data to be encapsulat

Background: The documentation costs can be lowered by reducing the
codes and/or constants and types that can be exported.

Global definitions (data, block
instantiating of the library functions or the general use of functions/functi
blocks may not be used within libraries.

that as a result of their definition or function exclude instantiating.

Programming function blocks for libra

For function blocks whose parameters must remain consistent when
processing across several calls it must be guaranteed that the valu

Programming guidelines

Application Style Guide

Version 1.02 Edition 17.12.2009 35/54

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
8

A
ll

rig
ht

s
re

se
rv

ed

A
pp

lik
at

io
ns

-S
ty

le
gu

id
e_

v1
_0

2_
en

.d
oc

Due to the fact that there is no debug support for libraries, special
emphasis must be placed on being able to test functions by monitoring

e

e

Recommendation
If a lot of parameters are transferred, then a type VAR_IN_OUT variable is

tpoints,

Recommendation
eter structures

Recommen
TION, (e.g.

f -1.0. This is used
uish whether a value is transferred for the parameter. The default

f the TO are accepted if the user does not make an appropriate

Rule
rmance reasons, actual values of technology objects, which are
 in the function block, are not written into a VAR_IN_OUT

Rule

Background: This simplifies handling in the HMI and also results in faster
data transfer to the HMI.

Recommen
OTION system functions

are used to program standard functions such as jogging, homing,

Programming function blocks for machine units

Rule

variables in the symbol browser. In this case, internal variables must b
defined in a suitable form so that they provide adequate information about
the state and sequences of the functions. For instance, this could includ
the last processing state or the actual step number.

used. A structure for example, configuration data, actual values, se
TO references, output of the actual state of the function block etc. is
generated for this variable. For control and/or status variables that often
change, it may make sense to declare these as VAR_INPUT or
VAR_OUTPUT to ensure simple access in LAD/FBD.

Several VAR_IN_OUT type variables can be used if param
are to be saved at various memory locations (setpoints in the retain area,
values from/to the HMI in the global area).

dation
Numerical parameters for which there are default values in SIMO
velocity, acceleration, jerk) are initialized with a value o
to disting
values o
assignment.

For perfo
not used
parameter structure or into an OUTPUT variable.

Structures of arrays should be set-up instead of arrays of structures.

dation
The PLCopen function blocks contained in the SIM

Functional units of a machine are combined to form aggregates in a
machine library. An aggregate comprises e.g. axes as well as sensors and

Programming guidelines

Application Style Guide

Version 1.02 Edition 17.12.2009 36/54

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
8

A
ll

rig
ht

s
re

se
rv

ed

A
pp

lik
at

io
ns

-S
ty

le
gu

id
e_

v1
_0

2_
en

.d
oc

. Modular library use is supported by sub-dividing the machine into actuators
aggregates.
Fig. 2-5: Aggregates for a tubular bagging machine

The aggregates of a horizontal tubular bagging machine are shown in Fig.
2-5. The following can be combined to form individual aggregates

• Product conveyor

• tappet chain

• Preliminary foil feed

Rule
ck.

ing, it is also possible to take into account various
aggregate and be able to select these versions

 variables.

 the differences between the technical versions are very extensive, then
separate function blocks can be created for the different versions.

Rule
o

 in
 possible for simple aggregates (e.g. a fan).

. For

and measuring inputs will also be deactivated..

The functions are controlled depending on the actual machine mode.

• Foil feed

• Cross Seal

A machine aggregate is only controlled from the aggregate function blo
When programm
technical versions of an
using configuration

If

The aggregate function block provides all of the functions required t
operate the machine aggregate. The functions of an aggregate are listed
Fig. 2-6. Less functions are also

All of the functions refer to the total aggregate with its associated axes as
well as additional technology objects (e.g. cams, measuring inputs)

Programming guidelines

Application Style Guide

Version 1.02 Edition 17.12.2009 37/54

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
8

A
ll

rig
ht

s
re

se
rv

ed

A
pp

lik
at

io
ns

-S
ty

le
gu

id
e_

v1
_0

2_
en

.d
oc

Fig. 2-6: Functions of a function block for an aggregate

Rule
Depending on the complexity and scope of an aggregate - or also
depending on the degree of standardization - it may make sense to shift out
individual functions of an aggregate into subordinate functions and/function
blocks.

In this particular case, the aggregate function block only handles the
coordination. The actual function itself is processed by the subordinate
blocks. All of the parameters required for this are transferred to the
subordinate block.

Functions with a low complexity can be directly implemented in the

Recommen

aggregate function block by calling system functions or PLCopen blocks.

dation
The interface for an aggregate function block is shown in the following
diagram.
Fig. 2-7: LAD representation for an aggregate function block

 FBAggregate

BOOL enable valid BOOL
BOOL reset done BOOL

Programming guidelines

Application Style Guide

Version 1.02 Edition 17.12.2009 38/54

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
8

A
ll

rig
ht

s
re

se
rv

ed

A
pp

lik
at

io
ns

-S
ty

le
gu

id
e_

v1
_0

2_
en

.d
oc

command commandAborted BOOL DINT
BOOL automatic error BOOL
BOOL jogForwardInc errorID DWORD
BOOL jogBackwardInc resetActive BOOL
BOOL jogForward actualCommand DINT
BOOL rd automaticActive jogBackwa BOOL
BOOL homing jogForwardIncActive BOOL
BOOL sitioning jogBackwardIncAbasicPo ctive BOOL
BOOL stop jogForwardActive BOOL
BOOL eStop jogBackwardActive BOOL

... homin... gActive BOOL
BYTE basicPositiselectAxes oningActive BOOL

 stopActive BOOL
 eStopActive BOOL
 aggregateReady BOOL

sPara
para eter

eterType meter
Type

 m

 sParam

sParamete
parameterRetai

eterRetairRetai
n

Type

 n

 sParam
n
Type

sParamet
Type parameterHMI

eterHMI erHMI

 sParam
Type

...

o ol of the FB in ST LAD / FBD
n ol of the functions of an aggregate can be realized in two w

depending on the programm eing used and the opinion
programming engineer.

numerical value offers the highest degree of
transparency.

On the other hand, for state control from logic programs (LAD/FBD) the
andling of individual Boolean inputs is simpler and more transparent.

l interface (DINT

a

ace
l of

State c ntr as well as
The co tr ays

of the ing language b

In ST, the handling of a

h

The AggregateFB offers both interfaces. The numerica
input command) has a higher priority. The Boolean interface is used if the
command input is not interconnected with a variable.

The selection of functions with numerical value and/or Boolean input is
shown in Table 2-9. A positive signal edge is used to start processing
particular function.

The actual state is represented in the same way using a numerical interf
(DINT output actualCommand) as well as also using Boolean outputs. Al
the outputs are always updated.

Programming guidelines

Application Style Guide

Behavior of the operating states
Fig. 2-8: Transitions between the functions of the AggregateFB

Version 1.02 Edition 17.12.2009 39/54

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
8

A
ll

rig
ht

s
re

se
rv

ed

A
pp

lik
at

io
ns

-S
ty

le
gu

id
e_

v1
_0

2_
en

.d
oc

AUTOMATIC, JOG, HOMING (REFERENCING) and BASICPOSITIONING
can only be started from the IDLE state.

The processing of AUTOMATIC, JOG, HOMING and BASICPOSITIONING
can be aborted by selecting STOP and ESTOP.

When de-selecting the JOG continuously state (command = 0 or a negative
signal edge at the corresponding Boolean input) then a transition is made
into the IDLE state.

In the JOG incremental state, a transition is made into the IDLE state after
an increment has been traveled through. A new positive signal edge is

stem transitions from the

 transitions from the

 state.

topped by selecting STOP and
ESTOP.

required for an additional increment.

After homing has been completed, the sy
HOMING state into the IDLE state.

After positioning has been completed, the system
BASICPOSITIONING state into the IDLE state.

After a stop operation has been completed for STOP, ESTOP, a transition
is made into the IDLE

The done output bit is set after successfully executing the states JOG,
HOMING, BASICPOSITIONING, STOP, and ESTOP.

The AUTOMATIC state can only be s

Programming guidelines

Application Style Guide

Version 1.02 Edition 17.12.2009 40/54

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
8

A
ll

rig
ht

s
re

se
rv

ed

A
pp

lik
at

io
ns

-S
ty

le
gu

id
e_

v1
_0

2_
en

.d
oc

 if

her
states. A value of 1 has the

 states and assigning priorities

If both inputs of a jog mode are set, then jogging is not executed or
jogging is active, then it is stopped.

The operating states are assigned priorities as shown in Table 2-9. Hig
priority operating states can replace low-priority
highest priority and a value of 5 the lowest priority.
Table 2-9: Numbering the operating

Required operating
state

Number Priority Description

idle 0 Idle state
eStop 10 1 Emergency stop of the

aggregate
jogForward (incr) 20 5 Position forward by one

increment (jog)
jogBackward (incr.) 30 5 Position backward by one

increment (jog)
jogForward (cont.) 40 5 Constant travel forwards as long

d (jog forward) as selecte
j 5 Constant rds as

long as se ckward)
ogBackward (cont.) 50 travel backwa

lected (jog ba
homing 60 5 Referencing

of the aggr
(homing) the axes

egate
manual (*) 70 5
basicPositioning 80 5 Basic positioning of the axes
automatic 90 5 Automatic mode of the

aggregate
stop 100 3 Axis is immediately stopped
holdAtEndOfCycle (*) 110 4 The axis is stopped after the

actual product has been
completed/finished

singleStep (*) 120 5 A clock cycle/step is executed
userDefined (*) 00 > 10

*) Is not programmed in the aggregate (template).

The currently active mo displa d using B ll as a
DINT output.

Selecting certain axes of the aggregate
The selectAxes input is used, if jogging, homin
should not be executed for all axes of an aggregate. The bits of this byte
a e for wh xes th nctiona
Depending on the assig f th byte, sev ral axes can be

de is ye oolean outputs as we

g and basic positioning

re used to cod ich a e fu lity should be executed.
nment o e e

simultaneously moved.

Programming guidelines

Application Style Guide

Version 1.02 Edition 17.12.2009 41/54

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
8

A
ll

rig
ht

s
re

se
rv

ed

A
pp

lik
at

io
ns

-S
ty

le
gu

id
e_

v1
_0

2_
en

.d
oc

arameter structure of an aggregate function block
The configuration as well as setpoints and actual values are transferred to

e sub-structures.

egate function block

P

the function block via structures and are VAR_IN_OUT data type. A
parameter structure is shown in Fig. 2-9 and an explanation is given in
Table 2-10.

The programming engineer should define th

Depending on the memory location (e.g. Retain, Global, ...) as well as use
(e.g. HMI), then more than one IN_OUT structure can also be created.

Fig. 2-9: Parameter structure of an aggr

TYPE
 s<LibName>ParameterType : STRUCT
 //for technology objects
 sTOs : s<LibName>TOType;

;
 //for dynamic parameter

DynamicType;

 sActualValues : s<LibName>ActualValuesType;
 //for diagnostics

e>DiagnosticsType;

 //for config data
 sConfigData : s<LibName>ConfigDataType;
 //for command values
 sCommandValues : s<LibName>CommandValuesType

 sDynamics : s<LibName>
 //for actual values

 sDiagnostics : s<LibNam
 END_STRUCT;
END_TYPE

Table 2-10: Description of the elements of the sParameterType structure

Structure element Description

sTOs Required technology objects, array for
each TO type used

sConfigData Configuration data, static data that do
not change in operation (e.g. machine
onfiguration) c

sCommandValues Setpoints (e.g. velocities, positions)
sDynamics Dynamic parameters, if necessary with

sub-structures for dynamic parameters
of the individual functionalities

sActualValues Actual values
sDiagnostics Diagnostics structure, e.g. current step

Programming guidelines

Application Style Guide

Version 1.02 Edition 17.12.2009 42/54

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
8

A
ll

rig
ht

s
re

se
rv

ed

A
pp

lik
at

io
ns

-S
ty

le
gu

id
e_

v1
_0

2_
en

.d
oc

Recommen
If several cribed in a library, then a parameter structure
should be used for all aggregates with as few su
must be clearly documented if structure

Rule
The sequence of an aggregate block is shown in

F

dation
aggregates are des

b-structures as possible. It
 variables are not used.

ig. 2-10: .

Programming guidelines

Application Style Guide

Fig. 2-10: Sequence of the aggregate function block

Version 1.02 Edition 17.12.2009 43/54

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
8

A
ll

rig
ht

s
re

se
rv

ed

A
pp

lik
at

io
ns

-S
ty

le
gu

id
e_

v1
_0

2_
en

.d
oc

Programming guidelines

Application Style Guide

Version 1.02 Edition 17.12.2009 44/54

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
8

A
ll

rig
ht

s
re

se
rv

ed

A
pp

lik
at

io
ns

-S
ty

le
gu

id
e_

v1
_0

2_
en

.d
oc

Cyclic:

• Enable the axes and additional TOs if still not enabled

• Set aggregateReady if all TOs are enabled

• Select the actual functionality (interrogate the inputs for the new state,
check for changes to the current state, set the new state)

• Check the parameters only when selecting (rising signal edge) the
functionality

• Execute functions in a case structure, use the PLCopen blocks, use a
subordinate function block for automatic operation.

• Cyclically interrogate for alarms at the active technology objects, for
alarms, set the error bits

• Initiate an error response when an error occurs (e.g. stopping of axes,
de-activate output cams)

• When enable is de-selected, de-activate the TOs

2.7.6 Error return and diagnostics of function blocks

Rule
An error is displayed by setting the Boolean variable error. An error code
that refers to the cause is output by the errorID variable, DWORD data type.

Rule
If the error involves a technology object (e.g. TO alarm, no TO object
transferred to a system function, incorrect parameterization), then the
technology object is coded in the first word (high word) of errorID.

The error number, which defines why the error occurred, is output in the
second word (low word) of the errorID variable.

If the error is not caused by a technology object, the first word of errorID is
assigned 16#0000.

Rule
The technology object type is coded using a numerical value, refer to Table
2-11 – and is saved in the first byte (high byte) of the first word of the
errorID variable.
Table 2-11: Technology object type coding

Technology object TO type coding

No TO 16#00
Speed controlled axis (driveAxis) 16#01
Positioning axis (posAxis) 16#02
Synchronous axis (followingAxis) 16#03
Synchronous object (followingObjectType) 16#04

Programming guidelines

Application Style Guide

Technology object TO type coding

Cam (camType) 16#05
Measuring input (measuringInputType) 16#06
Output cam (outputCamType) 16#07
External encoder (externalEncoderType) 16#08
Temperature controller (temperatureControllerType) 16#09
Fixed gear (_fixedGearType) 16#0A
Addition object (_additionObjectType) 16#0B
Formula object (_formulaObjectType) 16#0C
Sensor (_sensorType) 16#0D
Controller object (_controllerType) 16#0E
Cam track (_camTrackType) 16#0F
Path axis (_pathAxis) 16#10
Path object (_pathObje

Version 1.02 Edition 17.12.2009 45/54

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
8

A
ll

rig
ht

s
re

se
rv

ed

A
pp

lik
at

io
ns

-S
ty

le
gu

id
e_

v1
_0

2_
en

.d
oc

ctType) 16#11
Additional objects 16# FF 12 ..16#

Technology objects of the same TO type, as described in C
is

hapter 0, are
transferred in an array in the sub-structure sTOs. The index of the arrays
written to the second byte of errorID in order to be able to make a clear
differentiation between technology objects of the same type.
Fig. 2-11: Structure of the error ID for errors caused by a technology object

Fig. 2-12: Structure of the error ID for errors that are not caused by a technology object

Rule
Return codes from a system function are not directly output at output
errorID. The reason for this is that they are often difficult for users to

r own

s assignments or illegal states of the axis (the axis has

understand. The return codes from system functions are output in thei
range of numbers.

Before calling the system function, an interrogation is made for any
incorrect parameter
not been released, axis has not been homed if necessary).

Programming guidelines

Application Style Guide

Version 1.02 Edition 17.12.2009 46/54

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
8

A
ll

rig
ht

s
re

se
rv

ed

A
pp

lik
at

io
ns

-S
ty

le
gu

id
e_

v1
_0

2_
en

.d
oc

Rule
In order to standardize the errors, the range of numbers indicating the
reason for the error shown in the following table, should be used.
Table 2-12: Ranges of numbers for errors

Error reason Number range for FB return value

No error 0
Function block incorrectly
handled/operated

16#1000 .. 16#1FFF

A function was selected with reset
active

16#1001

Invalid operating state selection 16#1002
Error when parameterizing 16#2000 .. 16#2FFF
Error when executing from external
(e.g. incorrect I/O signals, axis not
homed)

16#3000 .. 16#3FFF

Error when executing from internal (e.g.
when calling a SIMOTION system
function)

16#4000 ..16#4FFF

Rule
If an error is identified when processing a function block, then the actual
request/motion is stopped. The error code associated with the first error
remains until it has been acknowledged (select reset, negative signal edge
from execute or enable).

Rule
All of the additional information about the errors that have occurred while
processing a function block should be saved in a diagnostics structure.
Fig. 2-13: Diagnostics structure

TYPE

sDiagnosticsType : STRUCT
 r64AdditionalValue1 : LREAL;
 r64AdditionalValue2 : LREAL;
 r64AdditionalValue3 : LREAL;
 i32ModeNumber : DINT;
 i32StateNumber : DINT;
 b32ReturnCode : DWORD;
 b16ErrorId : WORD;
 b8TOType : BYTE;
 b8TONumber : BYTE;
 END_STRUCT;
END_TYPE

Programming guidelines

Application Style Guide

Version 1.02 Edition 17.12.2009 47/54

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
8

A
ll

rig
ht

s
re

se
rv

ed

A
pp

lik
at

io
ns

-S
ty

le
gu

id
e_

v1
_0

2_
en

.d
oc

ement b8TOType (refer to Table 2-11); the index
of the technology object from the corresponding array is coded in element
b8TONumber.

I identified, then the return code of
th .

T in element b16ErrorId.

A are saved in the
r

F e aggregate function block,
t ber, in which the error
a

Rule
I for programming, then the actual step number is

i32StateNumber.

Rule

2.7.7

Rule
on

1.0 indicate that it involves a development release.

The document version has two digits and the software version has three

For a new main version, that has new functions, then the first digit is

Rule
Functions/function blocks are not changed so that they become

 previous version. If such a change is required, then a new
function block should be created and the old function block should be kept
in the library.

The TO type is coded in el

f a SIMOTION system function error is
stem function is saved in the eleis sy ment b32ReturnCode

he error code from errorId is additionally saved

dditional parameters associated with an error
64AdditionalValue variables.

or a function block with various modes, e.g. th
he mode is saved in the variable i32ModeNum
ctually occurred.

f a step cha
ntered into the element

in is used
e

Background: The user then receives information regarding the condition
that the function block is waiting for before continuing to process.

Each diagnostics structure of a function block includes, as a minimum, the
elements from Fig. 2-13. If additional elements are required, then these can
be appropriately added.

Versions

The official version (first release status) starts with version V 1.0. Versi
releases less than

digits. The first two digits match one another.

The third digit in the software version designates revisions that have no
effect on the documentation; for example pure debugs that do not involve
any new functions.

When expanding the existing functionality, the second digit is incremented.

incremented.

incompatible to a

Programming guidelines

Application Style Guide

Version 1.02 Edition 17.12.2009 48/54

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
8

A
ll

rig
ht

s
re

se
rv

ed

A
pp

lik
at

io
ns

-S
ty

le
gu

id
e_

v1
_0

2_
en

.d
oc

Rule
n changes are made, the

umber of the library version.

Example:
 in

 block FB2 is in UnitB. Both units are included in the library.
Table 2-13: Example of changing the version

The library versions are without any gaps. Whe
version number of the library is incremented. The modified function
block/function as well as the unit, in which the changes were made,
includes the actual n

In the example shown below, function block FB1 and function FC1 are
UnitA, function

Library UnitA UnitB FB1 FB2 FC1 Comment

1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 Released
1.0.1 1.0.1 1.0.1 FB1 has been

debugged
1.0.2 1.0.2 1.0.2 FB2 has been

optimized
1.1.0 1.1.0 1.1.0 FB1 has been

expanded
1.2.0 1.2.0 1.2.0 FB1 has been

expanded
2.0.0 2.0.0 2.0.0 2.0.0 New functions in FB1

and FC1
2.0.1 2.0.1 2.0.1 FB2 has been

debugged

Rule
For each chan the on d o d the library
/ unit / functio / n.

Rule
T tual lib ry versi d tionall re into t ialog
box of the library. For standard libra saved as author in the
properties window.

Template for versions unit aVersion
//SIEMENS AG
//(c)Copyri 07 All s served
//--
// unit for version history of a library
// file name: aVersion
// library: (that the source is dedicated to)
// system: (target system)

sion: (SIMOTION / SCOUT version)
trictions:

// require
// functionality: (that is implemented in the library)
//--
// change log table:

ge of
n block

 versi
functio

, the a

aptati ns are escribed at

he ac ra on is a di y ente d he properties d
ries, APC is

ght 20 Right Re

// ver
// res

ments: (hardware, technological package, memory needed, etc.)

Programming guidelines

Application Style Guide

Version 1.02 Edition 17.12.2009 49/54

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
8

A
ll

rig
ht

s
re

se
rv

ed

A
pp

lik
at

io
ns

-S
ty

le
gu

id
e_

v1
_0

2_
en

.d
oc

sion date expert in charge changes applied
.00.0

//

// ver
// 01 0 dd.mm.yyyy (name of expert) only refer to changed unit and

 function block/ function
//==

//--this part is only necessary because of use of a unit for version history-

roperties dialog box of the library. When compiling the library with the
rated version, no warnings are to be displayed that the programmer
 consider as being non-relevant. These warnings should be

d using a pre-processor instruction. Warning suppression should

The pre-processor instruction to suppress a warning has the following

ppressing compiler warnings

INTERFACE
END_INTERFACE

IMPLEMENTATION
END_IMPLEMENTATION

------------------------------------- //---------------------------------------

2.7.8 Performance test

Recommendation
Before a library is supplied, the function blocks should be tested on a slow

425) in order to better identify performance problems. CPU (e.g. D

2.7.9 Delivery

Rule
To program the source code, all compiler warning classes are activated in
the p
gene
would
suppresse
only be activated for the code section that generates the warning.

syntax:
Fig. 2-14: Su

//suppression of compiler warning <warningNumber>
{_U7_PoeBld_CompilerOption:= warning:<warningNumber>:off;}

To suppress warnings, "off" is used as option and to activate warning

Rule

Recommen
be supplied to generate a code example.

output, "on" is used. A comment should indicate which warning is
suppressed.

A library is not supplied as project, but as XML file. This is inserted using a
script in a project.

dation
A script can

Programming guidelines

Application Style Guide

Version 1.02 Edition 17.12.2009 50/54

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
8

A
ll

rig
ht

s
re

se
rv

ed

A
pp

lik
at

io
ns

-S
ty

le
gu

id
e_

v1
_0

2_
en

.d
oc

Recomme
A script can be supplied to parameterize specific aggregates - e.g. axes.
From an HTML interface, settings can be made at the axis, e.g. the modulo
l he drive and
a

2.7.10

A template for the aggregate function block is provided in the Intranet
through Application Support, production machines under Standard

t function and a CASE instruction in which the
es of the individual functions are programmed are contained in this.

ndation

ength or a calibration/adjustment of the reference torque from t
xis.

ST code template for an aggregate function block

Applications, topic "Style guide“ or on the Utilities & Applications CD. Type
definitions for the parameter structure, constants as well as runnable code
to select the curren
sequenc

Template

Application Style Guide

Version 1.02 Edition 17.12.2009 51/54

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
8

A
ll

rig
ht

s
re

se
rv

ed

A
pp

lik
at

io
ns

-S
ty

le
gu

id
e_

v1
_0

2_
en

.d
oc

3 Template

From the perspective of the development engineer, a description is made
within the program (development engineer documentation). The description
uses templates and comments. The development engineer defines the
source codes and documentation at one location.

The documentation is sub-divided into:

1. Documentation of the functionality

2. Documentation of the changes/debugs

Depending on the customer's requirement and the possibilities open to the
programming engineer, the documentation language is either in the mother
tongue or English.

STcode templates for the formal structure of a unit as well as for a function
block according to PLCopen are provided in the Intranet through
Application Support, product machines under Standard Applications with
the topic "Styleguide" or on the Utilities & Applications CD.

Documentation

Application Style Guide

Version 1.02 Edition 17.12.2009 52/54

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
8

A
ll

rig
ht

s
re

se
rv

ed

A
pp

lik
at

io
ns

-S
ty

le
gu

id
e_

v1
_0

2_
en

.d
oc

4 Documentation

The documentation for the project or the application is drawn-up specifically
to comply with the project requirements. The existing templates should be
used if individual blocks have to be documented.

Rule
An example to call the function block is supplied in the ST and LAD
programming languages.

Rule
Every exported function / function block / type definition is documented.

A template to document units / functions / function blocks and/or programs
is available on SIMOTION Utilities & Applications, section tools.

Appendix

Application Style Guide

Version 1.02 Edition 17.12.2009 53/54

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
8

A
ll

rig
ht

s
re

se
rv

ed

A
pp

lik
at

io
ns

-S
ty

le
gu

id
e_

v1
_0

2_
en

.d
oc

Appendix

5 Revisions/author
Table 5-1: Revisions/author

Version Date/revision Author

Origin 03.01.2008 / based on ST Style
guide 3.5, expanded by
specifications for libraries,
changeover to PLCopen V1.1

1.01 19.03.2008
1.02 17.12.2009

6 Literature

Literature
This list is in no way complete and only reflects a selection of suitable
literature.
Table 6-1

 Subject Title
/1/ SIMOTION System Manuals
/2/ PLCopen Function blocks for motion control Version 1.1

Appendix

Application Style Guide

Version 1.02 Edition 17.12.2009 54/54

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
8

A
ll

rig
ht

s
re

se
rv

ed

A
pp

lik
at

io
ns

-S
ty

le
gu

id
e_

v1
_0

2_
en

.d
oc

7 Contact partners

Application Center

SIEMENS
 Siemens AG
 Automation & Drives
 A&D MC PM APC
 Frauenauracher Str. 80
 D - 91056 Erlangen
 Fax: +49 9131-98-1297
 mailto: applications.erlf.aud@siemens.com

mailto:applications.erlf.aud@siemens.com

	1 Preliminary comment
	1.1 Terminology
	1.2 Scope of the document

	2 Programming guidelines
	2.1 Using programming guidelines for customer applications
	2.2 ST source
	2.2.1 Source
	2.2.2 Formatting
	2.2.3 Comments
	2.2.4 Unit names

	2.3 Name syntax for programs, variables and data types
	2.3.1 General name syntax
	2.3.2 Prefixes for derived/user-defined data types
	2.3.3 Prefixes for functions, function blocks and FB instances

	2.4 Variable definitions
	2.4.1 Constants / enumeration data types
	2.4.2 Variables
	2.4.3 Initialization
	2.4.4 IO variable

	2.5 Programs
	2.5.1 Operators
	2.5.2 Expressions
	2.5.3 Program control instructions
	2.5.4 Error handling

	2.6 Functions and function blocks
	2.6.1 FC/FB parameters
	2.6.2 Signal timing diagram of standardized parameters

	2.7 Libraries
	2.7.1 Assigning names
	2.7.2 Structure
	2.7.3 Programming
	2.7.4 Structure of a library unit
	2.7.5 Programming function blocks for libraries
	2.7.6 Error return and diagnostics of function blocks
	2.7.7 Versions
	2.7.8 Performance test
	2.7.9 Delivery
	2.7.10 ST code template for an aggregate function block

	3 Template
	4 Documentation
	5 Revisions/author
	6 Literature
	7 Contact partners

