SINAMICS S120
驱动器应用基础

Motion Control Application
前言

针对运动控制与伺服驱动器的基础应用，西门子（中国）运动控制应用中心编写了全套共 3 本手册。分别为：

- 应用基础手册 1 —— 驱动与控制基础
- 应用基础手册 2 —— SINAMICS S120 驱动器基础应用
- 应用基础手册 3 —— SIMOTION 运动控制器基础应用

该手册为全套手册的第二部分，介绍了西门子 SINAMICS 系列 S120 伺服驱动器的组成部件、项目配置、基本调试、电机优化、基本定位功能及通讯功能等基础应用技术。

本系列手册仅适用于西门子内部工程师交流学习及相关客户培训之用。由于编者水平有限，手册中难免出现纰漏之处，恳请广大同事能够不吝赐教。

SLC I DT MC APC
Solution Team
2010-01
目 录

1  SINAMICS S120 概述 ............................................. 1
  1.1  SINAMICS S120 驱动系统的组成 ................................. 1
    1.1.1  AC/AC 单轴驱动器 ......................................... 1
    1.1.2  DC/AC 多轴驱动器 ......................................... 3
  1.2  SINAMICS S120 的指示灯 ....................................... 6
  1.3  SINAMICS S120 实验设备 ...................................... 10

2  SINAMICS S120 项目配置 ........................................ 12
  2.1  离线项目配置 ................................................ 13
  2.2  在线项目配置 ................................................ 23

3  基本调试 ..................................................... 32
  3.1  控制面板（Control Panel）控制电机 ........................... 33
  3.2  操作盒（Control Box）控制电机 ............................... 36
  3.3  基本操作面板（BOP20）控制电机 ............................... 39
    3.3.1  BOP20 概述 .............................................. 39
    3.3.2  BOP20 参数设置方法 ...................................... 44
    3.3.3  BOP20 控制驱动电机演示 .................................. 49
  3.4  电机动态特性的调试 .......................................... 51
    3.4.1  Trace 功能测量时域曲线 .................................. 51
    3.4.2  Function generator 函数发生器调试 ....................... 55
    3.4.3  Measuring function 测量频域 Bode 图 ...................... 57

4  电机优化 ..................................................... 63
  4.1  自动优化 .................................................... 63
  4.2  驱动感应电机的优化 .......................................... 67
    3.1  驱动伺服电机的优化 .......................................... 70

5  基本定位 ..................................................... 73
  5.1  激活基本定位功能 ............................................ 73
  5.2  点动（Jog）.................................................. 76
  5.3  回零（Homing）............................................... 78
    5.3.1  设置参考点（Set Reference）.............................. 78
5.3.2 主动回零（Active Homing）..............................80
5.3.3 被动回零（Passive Homing）...............................82
5.4 限位（Limit）................................................84
5.5 程序步（Traversing Blocks）..................................84
5.6 手动数据输入（MDI）..........................................86

6 通讯.................................................................90
6.1 S120 与 HMI 直接通讯 .........................................90
6.1.1 网络地址设置 ............................................90
6.1.2 项目配置 ................................................92
6.1.3 建立变量表 ..............................................94
6.2 通过 DP 总线实现 S7-300 与 S120 的通讯 .........................96
6.2.1 网络地址设置 ............................................96
6.2.2 通讯报文设置 ............................................97
6.2.3 用 DP 总线对电机起、停及速度控制 .............................98
6.2.4 驱动器参数的读取及写入 ..................................100

7 DCC 功能 ...........................................................106
7.1 DCC 概述 ....................................................106
7.2 DCC 实验演示 ................................................107
1  SINAMICS S120 概述

SINAMICS S120 作为西门子 SINAMICS 驱动系列之一，可以提供高性能的单轴和双轴驱动，模块化的设计可以满足应用中日益增长的对驱动系统轴数量和性能的要求。

1.1  SINAMICS S120 驱动系统的组成

SINAMICS S120 驱动器包括：用于单轴的 AC/AC 变频器和用于公共直流母线的 DC/AC 逆变器。

1.1.1  AC/AC 单轴驱动器

单轴控制的 AC/AC 变频器：通常又称为 SINAMICS S120 单轴交流驱动器，其结构形式为电源模块和电机模块集成在一起，即集成整流逆变于一体，能够实现通常的 V/F 控制、矢量控制，又能实现高精度、高性能的伺服控制功能。它不仅能控制普通的三相异步电机，还能控制异步与同步伺服电机、扭矩电机及直线电机，强大的定位功能将能实现进给轴的绝对、相对定位，特别适用于单轴的速度和定位控制。

图 1.1 SINAMICS S120 单轴驱动器
SINAMICS S120 的单轴驱动系统的主要组成部分

- 控制单元：CU310 DP 或 CU310 PN

以 CU310 DP 控制器为例，CU310 DP 控制单元通过 PM-IF 接口连接模块型 PM340。其他 DRIVE-CLiQ 组件（如传感器接口模块或端子扩展模块）通过 DRIVE-CLiQ 连接。可使用 BOP20 基本型操作面板更改参数设置，在操作过程中，还可将 BOP20 面板安装到 CU310 DP 控制单元上进行诊断。

图 1.2 CU310 DP 的硬件结构图

- 功率模块：PM340

图 1.3 PM 340 功率模块
1.1.2 DC/AC 多轴驱动器

公共直流母线的 DC/AC 逆变器: 通常又称为 SINAMICS S120 多轴驱动器，其结构形式为电源模块和电机模块分开，如图 1.4 所示，一个电源模块将 3 相交流电整流成 540V 或 600V 的直流电，将电机模块（一个或多个）都连接到该直流母线上，特别适用于多轴控制，尤其是造纸、包装、纺织、印刷、钢铁等行业。优点是各电机轴之间的能量共享，接线方便、简单。

图 1.4 SINAMICS S120 多轴驱动器

SINAMICS S120 是集 V/F 控制、矢量控制、伺服控制为一体的多轴驱动系统，具有模块化的设计。各模块间（包括控制单元模块、整流/回馈模块、电机模块、传感器模块和电机编码器等）通过高速驱动接口 DRIVE-CLiQ 相互连接。以 SINAMICS S120 多轴驱动器为例，其核心控制单元 CU320 在速度控制模式下最多能控制 4 个矢量轴或 6 个伺服轴，可以完成简单的工艺任务。

SINAMICS S120 的多轴驱动系统的主要组成部分

- 控制单元：整个驱动系统的控制部分；
- 电源模块：将交流转变成直流，并能实现能量回馈；
· 电机模块（也称功率模块）：单轴或双轴模块，作为电机的供电电源；
· 传感器模块：将编码器信号转换为 DRIVE-CLiQ 可识别的信号，若电机含有 DRIVE-CLiQ 接口，则不需要此模块；
· 直流+24V 电源模块：用于系统的控制部分的供电；
· 端子模块和选件板：根据需要可连接或插入 I/O 板和通讯板。

模块化系统，适用于要求苛刻的驱动任务 SINAMICS S120 可胜任工业应用领域中的各种驱动任务，模块化设计，可解决要求极为苛刻的驱动任务。大量部件和功能相互之间具有协调性，用户因此可以进行组合使用，以构成最佳的方案。

图 1.5 SINAMICS S120 多轴驱动器的典型结构
1. 控制单元（CU320）

作为 SINAMICS S120 多轴驱动器的控制单元，CU320 负责控制和协调系统中所有的模块，完成各轴的电流环、速度环甚至是位置环的控制，并且同一块 CU320 控制的各轴之间能相互交换数据，即任意一根轴可以读取控制单元上其它轴的数据，这一特征广泛被用作各轴之间的简单同步。CU320 的硬件结构如图 1.6 所示。

根据所连接外围 I/O 模块的数量、轴控制模式、所需功能及 CF 卡的不同，1 个 CU320 可控制的轴数量也不同。

- 用作速度控制：最大控制轴数为 6 个伺服轴、4 个矢量轴和 8 个 V/F 轴。实际控制轴数与 CU320 的负荷（即所选功能）有关。伺服轴和矢量轴不能用同一个 CU320 来控制，但伺服轴和矢量轴都可以与 V/F 轴混合搭配；
- 用作位置控制：最大控制轴数为 4 个伺服轴或 2 个矢量轴。控制的轴数不是绝对的，与 CU320 的负荷有关。
2. 电源模块（Line Module）

SINAMICS S120 多轴驱动器的电源模块分为三种，分别是：基本型、智能型和主动型。
- 基本型（BLM）：整流单元，但无回馈功能。依靠连接制动手单元和制动电阻实现快速制动;
- 智能型（SLM）：整流回馈单元，直流母线电压不可调;
- 主动型（ALM）：整流回馈单元，且直流母线电压可调。

3. 电机模块（Motor Module）

电机模块即逆变单元，分为书本型和装机装柜型。其中，书本型又分为单轴电机模块和双轴电机模块。

1.2 SINAMICS S120 的指示灯

S120 的各个模块都带有 LED 指示灯，以实时反映出设备的运行状态，下面分别介绍一下控制单元（CU320）、整流模块（ALM 与 SLM）、电机模块的指示灯含义。

1. 控制单元（CU320）的 LED 指示灯含义

<table>
<thead>
<tr>
<th>LED 灯</th>
<th>颜色</th>
<th>状态</th>
<th>原因</th>
<th>解决办法</th>
</tr>
</thead>
<tbody>
<tr>
<td>RDY （READY）</td>
<td>-</td>
<td>关闭</td>
<td>没有上电</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>绿色</td>
<td>连续的</td>
<td>准备好运行，模块操作就绪并有发生循环的 Drive-CLiQ 通信</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>闪烁（2Hz）</td>
<td>CF 卡正在写</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>红色</td>
<td>连续的</td>
<td>装置至少存在一个故障</td>
<td>清除故障</td>
</tr>
<tr>
<td></td>
<td>闪烁（0.5Hz）</td>
<td>启动故障（例如，固件不能上装给 RAM）</td>
<td>检查 CF 卡是否正确插入；或替换控制单元，再上电</td>
<td></td>
</tr>
<tr>
<td>状态</td>
<td>LED 指示灯</td>
<td>说明</td>
<td>备注</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td>------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>绿色 / 红色</td>
<td>闪烁 (0.5Hz)</td>
<td>控制单元 CU320 就绪，但没有软件授权</td>
<td>获得授权</td>
<td></td>
</tr>
<tr>
<td>橙色</td>
<td>连续的</td>
<td>Drive-CLiQ 通讯建立</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>闪烁 (0.5Hz)</td>
<td>固件不能上装给 RAM</td>
<td>检查 CF 卡是否正确插入；或替换控制单元，再上电</td>
<td></td>
</tr>
<tr>
<td>DP1</td>
<td>红色</td>
<td>关闭</td>
<td>没有发生周期性通讯</td>
<td></td>
</tr>
<tr>
<td></td>
<td>连续的</td>
<td>正在进行周期性通讯</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>绿色</td>
<td>没有完整的周期性通讯：</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>闪烁 (0.5Hz)</td>
<td>• 主站没有传送设定值； • 同步操作中没有传送全局控制或主站生命周期</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPT</td>
<td>红色</td>
<td>连续的</td>
<td>周期性通讯受到干扰</td>
<td></td>
</tr>
<tr>
<td></td>
<td>选件板就绪</td>
<td>清除故障</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>绿色</td>
<td>连续的</td>
<td>选件板就绪</td>
<td></td>
</tr>
<tr>
<td></td>
<td>闪烁 (0.5Hz)</td>
<td>取决于使用的选件板</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>红色</td>
<td>连续的</td>
<td>模块至少有一个故障：或上电后选件板没有就绪</td>
<td></td>
</tr>
<tr>
<td></td>
<td>保留</td>
<td>清除故障</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOD</td>
<td>红色</td>
<td>关闭</td>
<td>保留</td>
<td></td>
</tr>
<tr>
<td>绿色</td>
<td>保留</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

表 1.1 CU320 的 LED 指示灯
2. 整流模块（ALM）的 LED 指示灯含义

<table>
<thead>
<tr>
<th>LED 灯</th>
<th>颜色</th>
<th>状态</th>
<th>原因</th>
<th>解决办法</th>
</tr>
</thead>
<tbody>
<tr>
<td>READY</td>
<td>-</td>
<td>关闭</td>
<td>装置供电电压不在允许的范围内</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>绿色</td>
<td>连续的</td>
<td>装置操作就绪，且有周期性的 Drive-CLiQ 通信</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>橙色</td>
<td>连续的</td>
<td>正在建立 Drive-CLiQ 通信</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>红色</td>
<td>连续的</td>
<td>组件存在至少一个故障</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>绿色/红色</td>
<td>闪烁（2Hz）</td>
<td>正在下载固件；通过 LED 的组件识别被激活</td>
<td>-</td>
</tr>
<tr>
<td>DC LINK</td>
<td>-</td>
<td>关闭</td>
<td>装置供电电压不在允许的范围内</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>橙色</td>
<td>连续的</td>
<td>直流母线电压在允许的范围内（只在运行就绪情况下）</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>红色</td>
<td>连续的</td>
<td>直流母线电压不在允许的范围内（只在 ALM 运行就绪的情况下）</td>
<td>-</td>
</tr>
</tbody>
</table>

表 1.2 ALM 的 LED 指示灯

3. 整流模块（SLM）的 LED 指示灯含义

<table>
<thead>
<tr>
<th>LED 灯</th>
<th>颜色</th>
<th>状态</th>
<th>原因</th>
<th>解决办法</th>
</tr>
</thead>
<tbody>
<tr>
<td>READY</td>
<td>-</td>
<td>关闭</td>
<td>装置没有供电电压，或不在允许的范围内</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>绿色</td>
<td>连续的</td>
<td>装置操作就绪</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>红色</td>
<td>连续的</td>
<td>发生过温，过流切断主开关</td>
<td>诊断故障，并承认清除故障</td>
</tr>
</tbody>
</table>
### 4. 电机模块（Motor Module）的 LED 指示灯含义

<table>
<thead>
<tr>
<th>LED 灯</th>
<th>颜色</th>
<th>状态</th>
<th>原因</th>
<th>解决办法</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC LINK</td>
<td>-</td>
<td>关闭</td>
<td>装置没有供电电压，或不在允许的范围内</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>黄色</td>
<td>连续的</td>
<td>直流母线电压在允许的范围内</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>红色</td>
<td>连续的</td>
<td>直流母线电压不在允许的范围内；供电出现故障</td>
<td>检查供电电压</td>
</tr>
</tbody>
</table>

注：此表适用于 5kW 和 10kW 的 SLM

表 1.3 SLM 的 LED 指示灯

表 1.4 Motor Module 的 LED 指示灯
1.3 SINAMICS S120 实验设备

如图 1.7 和图 1.8 所示，分别为 S120 实验设备的接线示意图和实物图，本调试手册所涉及到的 S120 实验配置、基本调试和基本定位都以此设备为例，该装置包括以下几个部分：

- 230V 电源进线电压
- 带有 TB30 端子板的 CU320 控制单元（插有 CF 卡）
- SLM 智能型电源模块（5kW），无再生反馈功能
- Double Motor Module 双轴电机模块（3A）
- 1 个同步电机（1FK7022-5AK71-1DG3，如图中的 M1），带有 Drive-CLiQ 接口和增量编码器（sin/cos 1 V_{FP} 2048 脉冲/旋转）
- 1 个同步电机（1FK7022-5AK71-1LG0，如图中的 M2），带有 Drive-CLiQ 接口和绝对值编码器（2048 脉冲/旋转 EnDat 512 脉冲/旋转）
- SMC20 编码器模块
- Control Box 操作盒

图 1.7 S120 实验设备的接线示意图
图 1.8 S120 实验设备的实物图
2  SINAMICS S120 项目配置

SINAMICS S120 的调试是通过创建配置一个项目的形式来进行的，共有两种创建项目的方式：
离线配置和在线配置。SINAMICS S120 的调试是通过集成的 DP 接口（装有 CU320 或 CU310 DP 的设备）或 PROFINET 接口（装有 CU310 PN 的设备）来完成的。

离线配置是所有的项目数据都在离线的方式下输入的，即在离线的状态下创建一个新项目，选择相应的驱动单元，根据图形化的提示一步一步地手动输入或选择各模块和电机的数据，当数据全部输完后，存储项目并下装到驱动装置中，即完成项目的创建。离线配置适用于不带有 DRIVE-CLiQ 接口的西门子标准电机或第三方电机。

在线配置是将编程器和驱动单元在线连接，控制系统通过 DRIVE-CLiQ 将相连接的各模块和电机的数据读入装置，再通过 DP（或 PROFINET）接口传到编程器中，即在线方式下将各模块的参数从装置上载到编程器中，无需手动输入。在线配置适用于带有 DRIVE-CLiQ 接口的西门子电机。

在配置 SINAMICS S120 项目之前（以下均以控制单元为 CU320 的设备为例），必须做以下的准备工作：

- 准备好装有 SCOUT 软件及 DP 通讯卡（CP5511/CP5512/CP5613 等）的 PC 机，检查 CU320 是否带有正确的 CF 卡；
- 连接好 SINAMICS S120 系统的各个硬件，检查所有的连接线和地线；
- 设置 SINAMICS S120 DP 地址（打开 CU320 前端正下方的绿色小盖将会发现地址开关）：

  1. 当 DP 地址开关全部置于 ON 或 OFF 时，其地址由参数 P0918 来设置；
  2. DP 地址开关设置地址时，按照二进制方式来设置：向上为 ON，向下为 OFF，排序为从左至右 0、1、2、3⋯，其对应地址数值为 2^0、2^1、2^2、2^3⋯。例如：开关 0 和 2 置 ON，则 DP 地址为 2^0 + 2^2 =1+4=5；若开关 0、1、2 都置 ON，则 DP 地址为 2^0 + 2^1 + 2^2 =1+2+4=7。
2.1 离线项目配置

第 1 步：新项目的创建

离线创建项目

打开 Scout（集成 Starter）

打开独立版本的 Starter

显示 STARTER Project Wizard 或 Project >> New with Wizard

创建新项目

Project >> New : Test

选择 Arrange drive units offline...

Create new project 创建：Test

第 2 步：DP 通讯口的设定

设定 DP 通讯（Option>> Set PG/PC interface）

Continue>>设定 DP 通讯口（Set PG/PC interface）

按 Change and test……按钮

编程器 DP 接口的设置：在“Interface Parameter Assignment Used”区，选择 PROFIBUS 通讯，如 CP5512(PROFIBUS)。
DP 属性的设置:

按 Properties…显示右面画面。各参数的设置参照图中的设置，波特率默认为 1.5Mbps，也可设成 12Mbps。

DP 网络诊断:

按 Diagnostics…显示右面画面。Test 按钮是测试编程器上的 DP 卡的是否正常工作，单击 Test 若显示 ok，说明 DP 卡正常；否则，请检查 DP 卡及其连线。Read 按钮能够读出所有站的站号，被读出的子站号底色为白色，如在图中数字 3 下方对应的白色。

注意：DP 网上所有工作的站号，都必须能读出，否则，编程器无法访问到。若不能读出，请检查接线，或改变波特率(通常为 1.5Mbps 或 12Mbps)。
第 3 步：驱动单元（电源模块、电机模块、编码器、电机等）的配置

- 第 3.1 步：驱动单元基本信息

  插入一个新的驱动器 (Insert single drive unit)

  设定驱动单元的数据：
  - 设备类型 (Device type)：SINAMICS S120 CU320
    SINAMICS S120 CU310 DP
    SINAMICS S120 CU310 PN
  - 设备版本 (Device version)：2.1x、2.2x、2.3x、2.4x、2.5x
    （其中，SINAMICS 310 DP/PN 只有 2.4x 和 2.5x 两个版本）
  - 总线地址 (Bus addr)：选择 0 到 126 之间的数字，此处的站号必须与
    SINAMICS S120 实际设置的站号保持一致。

- 第 3.2 步：选件板 (TB30、CBC10) 的配置

  双击 Configure drive unit，显示下面的画面，选择有无选件板。
第 3.3 步：电源模块 (SLM、ALM) 的配置

Continue > 插入电源模块：
若用 SLM(Smart Line Module)，则选择 No，即没有 Drive-CLIQ 连接；
若用 ALM(Active Line Module)，则选择 Yes，即有 Drive-CLIQ 连接。

配置 ALM 电源模块：
- 名称 (Name): Infeed_1
- 类型 (Operating type): Active Line Module
- 电源电压 (Supply voltage range): AC380~480V
- 冷却方式 (Cooling method): 自然冷却 (Internal air cooling) 或其它冷却
- 选择电源模块订货号: 6SL7x30-7TExx-Xaax
- 选择是否安装电源滤波器 (Line filter available)

电源模块辅助参数：
- 选择 “Supply/DC link identification at first switch-on”
- 连接的电网电压 (Device connection voltage): 400V
- 电网频率 (Rated supply frequency): 50Hz

DP 通讯报文 (Profibus PZD message):
- Telegram 370 for the infeedFree telegram configuration with BICO
- 第3.4步：驱动装置控制模式的配置

Continue >> 插入驱动器(电机模块、电机、编码器等)：选择Yes

Continue >> 配置驱动属性。
- 名称(Name)：Drive_1
- 控制模式(Operating type)：矢量模式(Vector)或伺服模式(Servo)

注意：1. 一个CU320最多能控制6个伺服轴或4个矢量轴。
2. 矢量控制和伺服控制不能混配，但可以将伺服轴和V/F控制的矢量轴混在一起配。

Continue > 选择控制方式，如：带编码器反馈的速度控制

Continue > 选择控制方式，如：带编码器反馈的速度控制
第 3.5 步：电机模块（功率模块）的配置

配置电机模块。
- 名称(Name): Power_unit
- 母线电压(Connection voltage): DC510-720V
- 冷却方式(Cooling method): 三种冷却方法(自然冷却 Internal air cooling)。
- 类型(Type): 单轴模块或双轴模块。如右图选双轴模块。
- 当电机模块的类型选定后，列表中将列出此类型所有模块的订货号。

电源模块 SLM

电源模块 ALM

电源模块的准备信号
要正常工作必须保证 P0864= “1”: 置常“1”，或用参数连接到端子上。

单电机模块

双电机模块

选择电机电源线的连接: X1 或 X2
第3.6步：电机和编码器的配置

矢量模式

 Continue >> 选择 IEC motor

伺服模式

Continue >> 电机配置：根据实际连接的电机选择下面相应的选项。

名称：Motor

1. 电机是否带有 DRIVE-CLIQ 接口。
2. 从列表中选出标准电机（1PH/1FK/1FT 等）。
3. 输入电机数据。如 1LA/1FU 或第三方电机。

注意：矢量模式，只有 1PH 电机；伺服模式，没有 1LA/1FU 电机。

针对上面三种选择方式，进行举例配置：

1. 带有 DRIVE-CLIQ 接口电机：较为简单，直接读入电机数据；
2. 从列表中选出标准电机：以伺服控制模式下的 1FK7 为例；
3. 输入电机数据矢量控制模式：以 1PH7 和 1LA7 为例。
伺服模式：
1FK7022-5AK71-1DA0

电机编码器，选 Encoder1，无外接编码器，型号 Sin/cos 增量编码器 2048S/R。
如有外接编码器，选 Encoder2 或 Encoder3，点击 Encoder data 输入编码器数据。

矢量模式：
1PH7101-2HF02-0BD0

电机编码器，选 Encoder1，其型号为 Sin/cos 增量编码器 2048S/R。
如有不是列表中的编码器，则选中 “Enter data”，点击 Encoder data 输入编码器数据。

矢量模式：
1LA7113-4AA11

电机编码器，选 Encoder1，其型号为 Encoder1，型号为 Sin/cos 增量编码器 2048S/R。
1. 选择应用场合：是标准应用，还是风机、水泵。
2. 优化的选择，对于矢量模式，通常对电机做优化。

DP通讯报文的配置。
如没有连接DP通讯，可以忽略此步。
第3.7步：概要

概要：显示所配置的全部数据信息，以供检查，也可用“Copy text to clipboard”按键，将信息存于一文件中。“Finish”按钮将完成所有的配置，退出项目的配置向导。

第4步：项目的下载与存储

第4.1步：在线连接，执行“Load project to target device”将项目下载到Sinamics S120的存储器RAM中；
第 4.2 步：由于掉电后 RAM 中的数据会丢失，所以执行完“Load to target”后，执行“Copy RAM to ROM”将数据参数保存在 Sinamics S120 的 CF 卡上；

第 4.3 步：执行“Load to PG”，将 Sinamics S120 中的项目下载到编程器 PG 中的 RAM 中；

第 4.4 步：执行“Save”，保存项目到 PG 中。

注意：驱动器的在线连接前需特别注意以下几点：
1. 用 Set PG/PC interface 功能，读出驱动器的子站号，注意波特率的设置；
2. 用 Project >> Accessible nodes 读出子站号和 Sinamics S120 的版本号；
3. 在上一步中读出的地址站号版本号必须与第 3.1 步的驱动单元基本信息中设置的完全一致。

2.2 在线项目配置

本节以 Scout V4.1.1.0（内部集成 Starter）为例，对于独立版的 Starter，在线配置步骤大体相同。

第 1 步：新项目的创建

第 2 步：DP 通讯口的设定

与 2.1 节“离线项目配置”中的第 2 步一致，见 2.1 节第 2 步。
第3步：插入一个新的驱动器

![Image](image.png)

设定驱动单元的数据：

- 设备类型（Device type）：SINAMICS S120 CU320
  SINAMICS S120 CU310 DP
  SINAMICS S120 CU310 PN

- 设备版本（Device version）：2.1x、2.2x、2.3x、2.4x、2.5x
  （其中，SINAMICS 310 DP/PN 只有 2.4x 和 2.5x 两个版本）

- 总线地址（Bus addr）：选择0到126之间的数字，此处的站号必须与SINAMICS S120 实际设置的站号保持一致。

第4步：在线

点击工具栏内的“connect to target system”图标（在下图中用圆圈标出），将Sinamics S120与编程器连接起来。

![Image](image.png)

注意：控制单元 CU320 上的 CF 卡内可能含有原来的旧的项目配置，系统在连接时会对新建项目和原有的旧项目的拓扑结构进行比较。如果二者存在差别，那么连接后会出现提示对话框，将不同之处标出。具体的提示内容取决于旧的项目，不一定与下面的对话框相同，但是相似。

以该提示信息为例，表格中第一列是“Online topology”，即CF卡中已有旧项目的配置拓扑；第二列是“Project topology”，即用户新建项目的拓扑。
可以看到，新旧项目有三处不同：控制单元的名字不同；旧项目有两个伺服轴 SERVO_02 和 SERVO_03，而新建项目中没有。表格下方有两个按钮，“Download”（下载）和“Load to PG”（上装）。由于我们要进行自动配置，所以都不要选，直接点击最下面“Close”按钮即可。

第 5 步：恢复工厂设定

点击工具栏内的“Restore factory settings”图标（在下图中用圆圈标出），将 Sinamics S120 恢复工厂设定。
此时弹出对话框，选择“Save factory settings to ROM”并点击“OK”按钮，系统开始进行工厂复位，复位结束后请选择“OK”确认。

第 6 步：自动配置驱动系统

在窗口左侧项目导航栏中，双击“SINAMICS_S120_CU320”（注意：该名字是在插入一个新驱动器时系统默认的，用户可以修改）下的“Automatic configuration”，如下图所示：

此时弹出一个对话框。当该对话框的第一行“Status of the drive unit”显示“First commissioning”时，如下图所示：
点击“Start automatic configuration”按钮，系统会让用户选择轴的控制类型——伺服或矢量控制。以伺服控制为例，选择“Servo”，然后点击“Finish”按钮。

此时系统开始自动配置，将可以识别的组件（即带有 Drive_CLiQ 接口的组件）上装到编程器中。
注意：如果驱动系统含有不能自动识别的组件（即不带 Drive_clIQ 接口的组件），比如通过 SMC 模块连接的传感器接口的电机等，系统会弹出提示对话框。例如下面的提示对话框，提示用户有一个驱动轴需要在离线模式下手动配置。

点击“OK”进行确认。系统会提示自动配置结束，点击“Close”按钮确认。

注意：在有些情况下，如果硬件系统的固件（Firmware）版本低的时候，第一次进行在线自动配置组件时，会先自动升级固件版本，升级时间比较长（3-4 分钟）。

28 MC Application Center
第 7 步：离线，手动配置不带 Drive_CLiQ 接口的组件

点击工具栏内的“disconnect from target system”离线图标（在下图中用圆圈标出），将 Sinamics S120 与编程器断开连接。

根据第 6 步中的提示信息，在项目导航栏中找到要手动配置的组件，双击“Configuration”，然后在右侧的窗口中点击黄色按钮“Configure DDS…”（Drive Data Set），如下图所示:

此时系统将弹出对该驱动器的手动配置对话框，具体步骤请参考“离线创建项目”部分。
第 8 步：项目的下载与存储

- 第 8.1 步：在线连接，执行“Load project to target device”将项目下载到 Sinamics S120 的存储器 RAM 中：

- 第 8.2 步：由于掉电后 RAM 中的数据会丢失，所以执行完“Load to target”后，执行“Copy RAM to ROM”将数据参数保存在 Sinamics S120 的 CF 卡上：

- 第 8.3 步：执行“Load to PG”，将 Sinamics S120 中的项目上载到编程器 PG 中的 RAM 中：
第 8.4 步：执行“Save”或“Save and compile”，保存并编译项目到 PG 中。

至此，在线创建项目的工作已经完成。对于项目的存储问题，需要注意以下两点：

- 在线情况下，用户所看到的内容（如配置拓扑和参数等）都储存在控制单元 CU320 的动态内存 RAM 中，并没有储存在 CF 卡上或计算机的硬盘里。如果一旦系统断电，这些内容都会立即丢失，等下次上电时，系统会将 CF 卡中旧的数据读到 RAM 中，CF 卡上的数据是断电保持的。所以用户需要将新的内容拷贝到 CF 卡中，执行此项操作的命令是“Copy RAM to ROM”。
- 如果还想把当前的内容存到计算机的硬盘中，就需要先执行“Load to PG”（或“Load all to PG”），将 RAM 区中的内容读到当前项目中。
3 S120 的基本调试

通过完成第 2 章的离线配置（或在线配置）之后，就可以应用 SCOUT 软件和外部扩展的装置对 S120 进行简单的调试，调试之前，先检查 S120 项目的拓扑结构是否与实际的硬件装置一致，如图 3.1 所示，其中不同的端口号分别代表不同组件的 Drive-CLiQ 接口。

图 3.1 项目的拓扑结构图
3.1 控制面板（Control Panel）控制电机

在屏幕左侧的项目导航栏里选中 Control panel 控制面板，如下图所示:

图 3.2 控制面板 Control panel

控制面板的具体操作步骤为:
1. 在白色的下拉栏中可以选择要操作的轴，SERVO_02 或 SERVO_03；
2. 然后点击“Assume control priority”按钮，使控制面板取得对驱动轴的控制优先权；
3. 确认监控时间，默认 1000 ms 即可，点击“Accept”按钮；
4. 然后将轴使能，选择“Enables”；
5. 设定 100%转速，如 200 rpm；
6. 点击“I”绿色按钮启动电机，左右拖拽“Scaling”滑块可以使电机在 0~200% 转速之间运转；点击下拉栏右侧的“Diagnostic view show / hide”按钮，可以看到驱动轴的更多信息；
7. 操作其它轴需要先将当前轴停止，取消使能，并点击“Give up control priority”按钮，放弃控制权，再选择另外的轴，重复上述过程。
1. 选择 SINAMICS S120 CL320-SERVO_02

2. 点击“Assume control priority”

3. 在“Assume Control Priority”对话框中，选择“Act.”并设置“Monitoring time”为1000 ms。注意：此功能仅在遵守相关安全注意事项时使用。违反这些安全注意事项可能导致人身伤害或设备损坏。

MC Application Center
图 3.3 控制面板 Control panel 的操作步骤
3.2 操作盒（Control Box）控制电机

操作盒（Control Box）上的开关接到了 CU320 的数字输入/输出端子上，用来控制电机的使能、启停与故障复位，而操作盒上的电位器旋钮则接到了选件板 TB30 的模拟输入通道上，用来进行电机转速的设定，如图 3.4 所示，操作盒示意图。

使用操作盒控制电机的准备工作：
- 断电情况下，在 CU320 的选件板插槽中插入 TB30，并将操作盒接好；
- 上电，通过自动配置（Automatic configuration）将选件板 TB30 添加到项目中。

操作盒上的开关、端子与 CU320 及 TB30 的参数对应关系见下表 3.1，在此例的自动配置中驱动电机分别是“SERVO_02”和“SERVO_03”，用户也可以对驱动器的名字进行更改。
### 表 3.1 CU320、TB30 与操作盒的参数对应表

- 设置轴的启动、使能、复位及转速设定信号

以驱动轴 (SERVO_02) 为例，双击它的 “Control logic”，按图中所示将 ON/OFF1、OFF2、OFF3 和 acknowledge faults 分别与 CU_S_003 的参数 r722 的第 0、1、2、3 位对应，即控制单元 CU320 的数字输入端子 X122:1、
X122:2、X122:3、X122:4，也就是操作盒上的 0、1、2、3 号开关。

然后，在驱动轴 SERVO_02 的“Open-loop/closed-loop control”中的“Setpoint addition”中，将 Speed setpoint 1 与 TB30_04 的 r4055[0]对应，即 TB30 的模拟输入通道 X482:1（操作盒上的 AI 0 电位器），如下图所示：

![图 3.5 Control logic 界面中设置启动、使能等信号](image)

![图 3.6 模拟量输入通道设定](image)
此时，就可以用操作盒来控制驱动轴（SERVO_02）了。与此类似，通过设置，还可以通过操作盒上的 4、5、6、7 号开关和 Al 1 电位器来控制另外一个驱动轴（SERVO_03）。

3.3 基本操作面板（BOP 20）控制电机

BOP20（Basic Operator Panel 20）是一个带有背景灯显示和 6 个按键的基本操作面板。BOP20 可以直接安装在 SINAMICS S120 的控制单元（CU310 或 CU320，固件版本 2.4 或以上）上进行操作。

3.3.1 BOP 20 概述

使用 BOP20 可以在调试的过程中实现对 SINAMICS S120 实现以下功能：

- 改变驱动对象，启动或停止驱动轴
- 实现参数的修改和显示
- 显示故障信息并复位故障

在一个应用简单并使用 SINAMICS S120 的场合，使用 BOP20 是一个经济有效的选择。

![BOP20 面板](image)

图 3.7 BOP20 面板
1. BOP20 的 LED 显示状态如下表所示:

<table>
<thead>
<tr>
<th>显示</th>
<th>描述</th>
</tr>
</thead>
<tbody>
<tr>
<td>左上角两位数字</td>
<td>显示被激活的传动对象</td>
</tr>
<tr>
<td>RUN</td>
<td>表明驱动轴处于运行状态；RUN 状态是通过驱动轴的位 r0899.2 来显示的</td>
</tr>
<tr>
<td>右上角两位数字</td>
<td>此处显示如下内容：</td>
</tr>
<tr>
<td></td>
<td>• 在参数值得左或右侧还有几位数字不可见。</td>
</tr>
<tr>
<td></td>
<td>（如：“r2”指的是参数值得左侧 1 位数字没有被显示出来）</td>
</tr>
<tr>
<td></td>
<td>• 故障：选择或显示其他传动对象的故障</td>
</tr>
<tr>
<td></td>
<td>• BiCO 参数的类型（bi, ci, bo, co）</td>
</tr>
<tr>
<td></td>
<td>• 连接器的源（表明此连接器属于哪个传动对象）</td>
</tr>
<tr>
<td>S</td>
<td>至少有一个参数被修改没有保存到 EEPROM 中，S 被点亮</td>
</tr>
<tr>
<td>P</td>
<td>当需要修改参数时，需要按 P 键以后才能修改，P 被点亮</td>
</tr>
<tr>
<td>C</td>
<td>至少有一个参数被修改但兼容性测试没有通过，C 被点亮</td>
</tr>
<tr>
<td>底部六位数字</td>
<td>显示如：参数值、下表、故障或报警</td>
</tr>
</tbody>
</table>

表 3.2 BOP 的 LED 显示状态

2. BOP20 的按键信息如下表所示:

<table>
<thead>
<tr>
<th>按键</th>
<th>名称</th>
<th>描述</th>
</tr>
</thead>
<tbody>
<tr>
<td>![运行]</td>
<td>运行</td>
<td>将驱动轴的使能命令源“ON/OFF1”设置成来源于 BOP20，即来源于控制单元的 r0019.0，启动驱动轴。</td>
</tr>
<tr>
<td>![停止]</td>
<td>停止</td>
<td>将驱动轴的命令源“ON/OFF1”、“OFF2”、“OFF3”设置成来源于 BOP20，即来源于控制单元的</td>
</tr>
</tbody>
</table>
当此键被按下，r0019.0 , .1 , .2 被同时复位。
当此键释放后，r0019.0 , .1 , .2 被设置成 1。

<table>
<thead>
<tr>
<th>功能</th>
<th>此功能键的功能取决于 BOP20 显示的内容。</th>
</tr>
</thead>
<tbody>
<tr>
<td>参数</td>
<td>此功能键的功能取决于 BOP20 显示的内容。</td>
</tr>
<tr>
<td></td>
<td>如果此键被按下超过 3s，则“Copy RAM to ROM”功能被执行。“S”显示消失</td>
</tr>
<tr>
<td>增加</td>
<td>这两个按键的功能依赖于当前的显示内容，一般用于增加或减少值。</td>
</tr>
</tbody>
</table>

表 3.3 BOP 的按键信息

3. BOP20 的功能如下表所示:

<table>
<thead>
<tr>
<th>名称</th>
<th>描述</th>
</tr>
</thead>
<tbody>
<tr>
<td>背景灯</td>
<td>通过 CU 上的参数 p0007 可以设置一个时间，在没有任何按键的情况下，背景灯会自动关闭。只要按有按键按下，背景灯就会打开。</td>
</tr>
<tr>
<td>改变传动对象</td>
<td>通过设置 CU 上的参数 p0008 或“Fn”键和“Arrow up”键可以改变传动对象。</td>
</tr>
<tr>
<td>访问等级</td>
<td>通过参数 p0003 可以设置访问等级，访问等级越高，BOP20 可以访问的参数也就越多。</td>
</tr>
<tr>
<td>参数过滤</td>
<td>通过参数 p0004 可以实现参数过滤功能，只有特定的功能参数可以被 BOP20 显示出来。</td>
</tr>
<tr>
<td>选择运行显示</td>
<td>在运行显示状态，实际值和给定值被显示。也可通过 p0006 来显示。</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------------------------------------------------</td>
</tr>
<tr>
<td>热插拔</td>
<td>BOP20 支持热插拔功能：如果使用 BOP20 控制驱动运行时，当拔掉 BOP20 后，驱动会停止。当重新插上 BOP20，需要重新启动传动；如果当前没有使用 BOP20 控制驱动运行，当拔掉 BOP20 后，对驱动没有影响。</td>
</tr>
<tr>
<td>功能键</td>
<td>当 “P” 或 “Fn” 键与其他键一起使用时，必须先按下 “P” 或 “Fn” 键，然后再按下其他键。</td>
</tr>
</tbody>
</table>

表 3.4 BOP 的功能表

4. BOP20 的相关参数：

- 对于控制单元
  - r0000  BOP20 运行显示
  - p0003  BOP20 访问等级
  - p0004  BOP20 参数显示过滤
  - p0007  BOP20 背景灯设置
  - p0008  BOP20 传动对象选择
  - p0009  设备调试，参数过滤
  - p0011  BOP20 密码输入
  - p0012  BOP20 密码确认
  - r0019  BOP20 控制字
  - p0977  保存所有参数

- 对于所有驱动对象
  - p0005  BOP20 运行显示选择
  - p0006  BOP20 运行显示模式
  - p0013  BOP20 用户定义参数
  - p0971  保存传动对象参数

- 对于所有控制单元（如：servo，vector，infeed，TM31）
此外，通过 BOP20 实现的重要功能有:

• 工厂复位
  通过设置控制单元 CU 上的参数完成工厂复位
  ➢ p0009 = 30
  ➢ p0976 = 1

• Copy RAM to ROM
  在 CU 上可以初始化所有参数，并保存在非易失性内存中（CF 卡）
  ➢ 按住 P 键 3 秒
  或
  ➢ p0009 = 0
  ➢ p0977 = 1

• LED 识别
  驱动器对象的主要组成部分（如，电机模块）可以通过参数 p0124 指数来识别。装置上的“Ready”LED 指示灯开始闪烁，该指数与 CU 上的参数 P0107 的指数相匹配。通过这一参数可以识别出驱动对象的类型。在驱动对象上，可以通过以参数来识别组件:
  ➢ p0124，通过 LED 检测功率单元
  ➢ p0144，通过 LED 检测电压传感器模块
  ➢ p0144，通过 LED 检测传感器模块

• 故障复位
  按住 Fn 键，可以承认所有校正过的故障错误。
3.3.2 BOP 20 参数设置方法

1. 特点
   • 运行显示
   • 改变驱动对象
   • 显示/改变参数
   • 显示/复位故障和报警
   • 控制驱动轴

2. 运行显示
   BOP20 可以通过参数 p0005 和 p0006 来设定每一个驱动对象运行显示的状态，通过运行显示，可切换到另一个驱动对象的参数。具体描述如下：
   • 改变驱动对象
     ➢ 按下“Fn”和“Arrow up”键，屏幕左上角的驱动对象号开始闪烁
     ➢ 使用“Arrow up”键选择需要的驱动对象
     ➢ 使用“P”键来确认
   • 参数显示
     ➢ 按下“P”键
     ➢ 使用“Arrow up”键选择需要设置的参数
     ➢ 按下“Fn”键，显示参数 r0000
     ➢ 按下“P”键，切换到运行显示状态
3. 参数显示

- 通过使用 BOP20 上的数字选择参数
  - 按下 “P” 键，可以从运行显示状态切换到参数显示
  - 使用 “Arrow up” 键选择需要设置的参数
  - 再按下 “P” 键，显示参数值
  - 同时按下 “Fn” 和 “Arrow up” 键可以切换不同的驱动对象
  - 使用 “Fn” 键可以在参数 r0000 和最后显示的参数之间切换

具体操作如下图:

图 3.8 参数显示操作流程
4. 参数值显示

- 通过按下“P”键，可以切换参数和参数值显示，在参数值的显示中：
  - 按下“Arrow”键，可以增加或减小可修改参数的参数值
  - 按下“Fn”键，可以让参数值的某一位闪动，只有此时方可修改

具体操作如下图：

<table>
<thead>
<tr>
<th>部分</th>
<th>参数</th>
<th>说明</th>
</tr>
</thead>
<tbody>
<tr>
<td>十进制</td>
<td>p1521</td>
<td>例如：p1521</td>
</tr>
<tr>
<td>整型数</td>
<td>p0210</td>
<td>例如：p0210</td>
</tr>
<tr>
<td>十进制 (位数多)</td>
<td>p1084</td>
<td>例如：p1084</td>
</tr>
<tr>
<td>时间值</td>
<td>p0969</td>
<td>例如：19h:32m:12s:123ms</td>
</tr>
<tr>
<td>H：十六进制</td>
<td>0x0a0FB001</td>
<td>0x0a0FB001</td>
</tr>
</tbody>
</table>

图 3.9 参数值显示操作流程
例如：改变一个参数，访问等级被预先设置 p0003=3，如下图所示：

图 3.10 参数值 p0003 修改访问等级

例如：改变一个连接器参数，如将 p840.0 设置成 r0019.0，如下图所示：

图 3.11 参数值 p0003 修改访问等级
5. 故障和报警显示

- 故障显示

5.1 故障显示

故障显示

- 报警显示

5.2 报警显示
3.3.3 BOP 20 控制驱动电机演示

- 在使用 BOP20 控制驱动轴时，SINAMICS S120 上的 Control Unit 控制字 r0019 可以连接到驱动轴或整流模块的二进制互连参数中。
- 注意：如果选择了标准的 PROFIdrive 报文，此连接无效。
- 操作步骤如下：

1. 选择驱动轴，即 Drive No. 为 02；选择显示参数 p0005，将其关联到该驱动的参数 r21，即实际速度。

![图片1]

2. 选择驱动轴 ON/OFF1 使能信号参数 p840.0，将其互连到 CU 中的 BOP20 控制字参数 r0019 上。

![图片2]

3. 选择驱动轴的固定值设定参数 p2900，设定所需要的转速，如：将 p2900 参数值设为 2.25，其基值为参数 r2700 的 6000 r/min，即电机设定转速

\[ n = 6000 \times 2.25 \% = 135 \text{ r/min} \]
4. 将驱动轴设定好的参数 p2900 关联到驱动速度环控制器的速度设定通道 1 上，即参数 p1150。

5. 将参数返回到驱动参数 r0000，使其进入显示状态，按下运行按钮，启动驱动轴，按下停止按钮，停止驱动轴。
3.4 电机动态特性的调试

在 SCOUT 软件中应用 "Trace / function generator" 或 "measuring function" 功能来对电机的动态特性进行调试。

3.4.1 Trace 功能测量时域曲线

在工具栏中点击 "Trace / function generator" 按钮或通过项目栏的菜单选择 Drives >> SERVO_02 >> commissioning >> Trace，如下图:

![Trace 功能选择](image)

操作步骤:

- 设定需要观察的物理量曲线，如:
  - 转速设定值 Speed setpoint r062
  - 转速实际值 Speed actual value r063
  - 实际电流值 Absolute current actual value r068

图 3.14 Trace 功能选择
• 设定记录时间系数 recording time factor
此处设为 5，表示采样周期为 5*0.125=0.625 ms，即每隔 0.625 ms 记录一个点。需要注意的是，系统可以记录的点数是有限的，当采样周期缩短时，总的记录时间也会相应减少，即 Max duration 会缩短。

• 设定触发方式
Type: Bit pattern（位触发）
Param. No.: Cu_126.r722
Bit mask: 1
Bit pattern: 1（当 r722 的 bit0 为 1，即操作盒的 DI0 为 1 触发）
Pretrigger: 1.25 ms（预触发时间，还将记录触发前 1.25ms 曲线）

图 3.15 Trace 功能设置

• 点击“start trace”按钮，系统开始等待触发信号，如下图:
图 3.16 Trace 功能（等待触发）

- 调节操作盒上的电位器 AI0，设定一定的转速，如 10%，将 1 号开关（OFF2）和 2 号开关（OFF3）打到“On”，再将开关 0（OFF1）打开，此时显示“Trace 1 running”，如下图:

图 3.17 Trace 功能（曲线记录运行中）

- 系统在完成记录后，会弹出转速/时间图，在图中点击鼠标右键，选择 Scaling 可以进行曲线缩放，如下图:

图 3.18 Trace 曲线

- 在弹出的缩放对话框中，将实际转速曲线的坐标范围调成与转速设定
值曲线一样的范围内。

图 3.19 Trace 曲线坐标范围调整

- 此时便可以方便地比较实际转速与设定转速，如下图所示，还可以调出横纵坐标标尺，便于精确比较。

图 3.20 坐标调整后的 Trace 曲线

- 上图中的实际转速超调量有些大，将近 50%；可以通过自动优化电机参数，或通过手动改变速度调节器的比例增益系数和积分时间来改进电机的动态特性，再通过 Trace 功能比较观察电机特性曲线，找到最合适的动态特性。（注：自动优化电机参数详见下一节）
3.4.2 Function generator 函数发生器调试

在“Trace”选项卡下，将触发方式改为“Immediately recording”:

![图3.21 坐标调整后的 Trace 曲线]

选择“Function generator”选项卡，按下图中的参数进行设置，然后取得轴的控制权，并设定监控时间（默认的1000 ms 即可）:

![图3.22 Function generator 界面设置]
点击“Drive ON”按钮，再点击启动按钮，启动函数发生器：弹出对话框，点击 Yes 确认后，电机开始反复正转反转。再点击“Start trace”按钮，系统开始记录曲线波形。

图 3.23 启动函数发生器记录 Trace 曲线
记录完成后，通过曲线的坐标缩放调整相关的曲线在同一坐标下，可以得到图 3.24 中的曲线图，这样就可以观察出电机动态响应的优劣，并且通过比例增益系数和积分时间的改变来调节电机的动态响应特性。

![图 3.24 Trace 曲线坐标范围调整](image)

### 3.4.3 Measuring function 测量 Bode 图

Measuring function 功能只适用于“伺服控制”方式，用于对驱动（drive）进行优化。Measuring function 可以选择对速度环/电流环的不同位置加入信号（ramp-function generator signal），对系统进行时域/频域的分析，此时系统会自动对 Trace 功能进行设置。

步骤:

- 设置启动“Measuring function”的条件（使能轴，可以使用 Control Panel）；
- 选择运行模式，比如“滤波器后的速度给定”；
- 选择轴；
- 将设置下载到目标轴上（“Download parameterization”按钮）；
- 开始“Measuring function”。

57
如图所示，设置测量功能，并下载参数设置。启动 Measuring Function，得到系统的响应。

图 3.25 Bode 图测量设置

设置响应的监控时间（默认 1000ms），得到系统的频裕响应图。可以通过调整速度控制器的 “P gain” 参数（通常由缺省值逐渐加大）和 “Reset time” 参数（通常由缺省值逐渐减小）来进行速度环的优化。

图 3.26 设置响应时间
在得到的Bode图中点击鼠标“右键”\“Measuring cursor”\“X and Y-Measuring cursor”，显示测量光标。

图3.27 选择测量光标

根据控制理论：幅频响应为“-3dB”处对应的频率为“截止频率”；此频率下相频响应与“-180”之差为“相角裕度”；相频响应“-180”处对应的幅频值与“0dB”之差为“幅值裕度”。如下图：

图3.28 Bode图测量
按图 3.28 中的 “1” 所示，移动 “X1” 光标，观察 “Y（X1）” 为 “-3db”。此时 X1 = 358.183Hz（截止频率）；同时可以看到，截止频率处对应的相频响应为 -118.2 度，相角裕度 = -118.2 - (-180) = 61.8 度。

如图 3.28 中的 “2” 所示，移动 “X2” 光标，观察 “Y（X2）” 为 “-180度”。此时，对应的幅值为 “-11.9dB”，幅值裕度 = 0 - (-11.8) = 11.9dB。

可以通过调整系统速度控制器的比例 P gain 和 Reset time 来进行系统优化。优化原则：

- 截止越高越好，决定了系统的上升时间；
- 为同时满足系统的稳定性和鲁棒性要求，一般：幅值裕度通常大于 12dB；相角裕度通常在 30 度和 60 度之间；
- 自然频率后，超过 0dB 的频率点，为危险极点。

需要设置滤波器加以滤除，以下图的系统为例说明：

图 3.29（Kp = 15 Nms/rad，Tn = 100 ms）Bode 图
设置滤波器如下：

图 3.30 滤波器设置（Band stop filter: f = 920 Hz, BW = 300 Hz）
图 3.31 加入滤波器后的 Bode 图
4 电机优化

从 V2.4 开始，Sinamics S120 开放了对电机的优化功能，可以优化的电机包括普通感应电机和同步伺服电机，无论对西门子电机还是对第三方电机都可以达到最优的控制特性。

4.1 自动优化

Sinamics S120 的调试软件 Scout（或 Starter）提供了自动优化的功能，优化包括电机数据计算识别、静态优化和动态优化，后面两节会着重介绍电机数据计算识别和静态优化，本节主要对自动优化如何操作的介绍，特别是对于西门子标准的电机可以进行自动的控制器动态优化，自动优化后的控制器性能可以大大提高，当然并不是自动优化过的控制器的性能就最佳，这要根电机所带负载的情况及工作条件所定，往往是在完成自动优化后，还要进行大量手动优化工作，通过借助 Trace 曲线图及 Bode 图的分析功能，以使控制器的控制性能达到最佳的效果。

在 Scout 项目中，如下图，选择“Automatic controller setting”功能。

图 4.1 自动优化选择
优化操作步骤如下图：

图 4.2 自动优化操作步骤
优化过程结束后，如下图所示：

图 4.3 自动优化操作结束

优化后的计算参数，如图中的速度环的比例增益及积分时间的计算值与默认值不同，如需使用优化后的新参数，可以选择“Accept”接受这组新参数，并执行以下几步：

- Give up control priority
- Copy RAM to ROM
- Load to PG
- Save project

图 4.4 优化后的新参数接受
图 4.5 优化前的速度设定与实际值的 Trace 曲线（Kp=0.009, Tn=10）

图 4.6 优化后的速度设定与实际值的 Trace 曲线（Kp=0.023, Tn=10.998）

由上图 4.5 和图 4.6 比较可以看出，在相同的速度给定下，自动优化后的控制器性能明显比没有优化的好很多，超调量显著减小。
4.2 驱动感应电机的优化

当 S120 驱动普通感应电机（SIEMENS 电机或第三方电机）使用矢量方式（VECTOR）或无编码器矢量方式（SLVC）时，优化步骤如下：

1. 正确配置电机

- 完成项目配置；
- 依照电机铭牌输入电机额定数据，对于感应电机，需要输入额定电压 p304、额定电流 p305、额定功率 p307、额定功率因数 p308、额定频率 p310、额定转速 p311、最大转速 p322、电机冷却方式 p335、电机温度报警/故障门槛值 p604/p605；
- 如果知道相关机械数据输入电机转动惯量 P341，系统转动惯量与电机转动惯量比值 P342，电机重量 P344；
- 电机等效图数据不必输入；
- 设定变频器工作模式 P1300，负载类型 P205，工艺应用 P500。

感应电机的等效回路图：

![感应电机的等效电路](image)

图 4.7 感应电机的等效电路

项目配置结束后进行电机优化，电机优化的条件：电机冷态，抱闸没有闭合，有效措施确保机械系统无危险。
2. 优化过程

(a) 电机数据计算 P340

P340 是基于电机铭牌数据的计算（定/转子阻抗感抗等）该过程不必使能变频器。计算完成后 P340 自动恢复为 0。

(b) 电机数据静态辨识 P1910

P1910 用于电机数据静态辨识，该过程将计算：
- 定子冷态阻抗 P350
- 转子冷态阻抗 P354
- 定子漏感 P356
- 转子漏感 P358
- 主电感 P360
- 对于需要弱磁工作的电机、有编码器的矢量控制 VC 方式下可选择电机磁化曲线的计算 P1910=3（计算磁化曲线的磁通和励磁电流 P362 ~ P369），在弱磁区更精确地计算电机励磁电流以提高转矩精度。

执行 P1910 需要使能变频器。辨识过程中：
- 变频器有输出电压，输出电流
- 电机可能转动最大 90
- 轴端无转矩

电机数据静态辨识步骤：
- 设定 P1910
- 使能 ON/OFF1 并保持该位为 “1”

电机辨识过程中电机可能会微微转动，辨识结束后 P1910 自动恢复为 0。
（c）电机数据动态辨识 P1960

P1960 用于电机数据动态辨识，该过程需要使能变频器。辨识过程将完成：

- 编码器测试（如果是 VC 方式）
- 计算磁化曲线的磁通和励磁电流（P362 ~ P369）
- 速度环参数优化（P1460/P1470、P1462/P1472）
- 加速度预控（P1496）
- 计算系统转动惯量与电机转动惯量比例（P342）

动态辨识步骤：

- 电机空载，设定 P1960=1/2（VC / SLVC）；
- 使能 ON/OFF1 并保持该位为“1”；
- 变频器自动执行动态优化过程，电机旋转，优化结束后 P1960 自动恢复为 0；
- 电机带载优化，带载后系统转动惯量等发生变化，设定 P1960=3/4；
- 使能 ON/OFF1 并保持该位为“1”；
- 变频器自动执行动态优化过程，电机旋转，优化结束后 P1960 自动恢复为 0，完成全部自动优化过程；
- 优化完成后必须执行“copy RAM to ROM”。

系统数据自动辨识后，请依照实际工艺要求使用 Trace 功能对速度环参数微调。

注意：

- P1967（速度环动态响应因子），当要求系统动态响应快时该值需 >100%；
- P1960 优化结束后加速度预控 P1496 设为 100%，若速度给定变化比较大或齿轮传动时建议取消加速度预控。
4.3 驱动伺服电机的优化

1. 完成项目配置并依照电机铭牌正确输入电机额定数据及编码器类型，选择同步电机（旋转，永磁），项目配置结束后进行电机优化；
2. 执行电机数据计算 P340；
3. 电机数据静态辨识 P1910；
4. 电机数据及控制数据动态优化 P1960；
5. 依照实际工艺要求使用 Trace 功能调整速度环。

注意：电机优化条件：电机冷态，抱闸没有闭合，有效措施确保机械系统无危险。

（a）电机数据计算 P340

P340 是基于电机铭牌数据的计算（定/转子阻抗感抗等），该过程不必使能变频器，计算结束后 P340 自动恢复为 0。

（b）电机数据静态辨识 P1910

P1910 用于电机数据静态辨识，该过程需要使能变频器。辨识过程中：
• 变频器有输出电压，输出电流；
• 电机可能转动最大 210 度。

P1910=1 将计算：
• 定子冷态阻抗 P350
• 转子冷态阻抗 P354
• 定子漏感 P356
• 转子漏感 P358
• 主电感 P360

电机数据静态辨识步骤：
• 设 P1910=1
• 使能 ON/OFF1
辨识结束后 P1910 自动恢复为 0。
（c）电机数据动态辨识 P1959 + P1960

P1959 和 P1960 配合使用，用于电机数据动态辨识，该过程需要使能变频器。辨识过程将完成:

- 计算磁化曲线；
- 计算系统转动惯量与电机转动惯量比例（P342）等。

动态辨识步骤:

- 电机空载优化，以精确计算电机动态数据（如电机的转动惯量等）；
- 电机带载优化，带载后系统总的转动惯量等发生变化需执行 p1959=4, P1960=1 以完成动态优化；
- 如果项目配置时选择了扩展的给定通道（Extended Setpoint）斜坡函数发生器有效，建议在做空载优化时通过设置 P1958=0 取消，同时不要使用旋转方向禁止功能 P1959.14=1、P1959.15=1；
- 若电机带载后需要测试系统转动惯量，则需根据负载及机械的实际情况设定斜坡上升下降时间 P1958≠0，然后执行 P1960=1，P1958=4，优化过程中电流及速度限幅有效；
- 选择优化项目，设置 P1960+P1959，使能 ON/OFF1。

电机辨识过程中电机会加速至最大转速，优化过程中只有最大电流 P640 和最大转速 P1082 有效，辨识结束后 P1960 自动恢复为 0。优化完成后必须执行 copy RAM to ROM。

注意: 若机械系统没有条件执行电机空载优化，可直接进行带载优化，此时必须考虑机械条件限制如：机械负载惯性、机械强度、运动速度、位移的限制等。前三种情况可适当调整 P1958、P640、P1082，通过使用斜坡上升/下降时间、速度限制、电流限制来减少机械承受的压力做辅助保护，如机械位置有限制则最好不做动态优化或可通过 P1959.14 和 P1959.15 做限位。
（d）速度环动态特性的优化

依照实际工艺要求使用 Trace 功能优化速度环控制器 P1460/P1470、P1662/P1472。

S120 驱动伺服电机必要的电机数据：P305、P311、P314、P316、P322、P323、P400，其它电机正常运行所需参数（如 P341、P350、P353、P356 等）可由计算得到。
5 基本定位

S120 包括用于多轴系统的 DC/AC 装置和用于单轴系统的 AC/AC 装置，
这两种形式的 Firmware V2.4 及以上版本都具备基本定位功能。当前 V2.4 版本的 S120 具有以下定位功能:

- 点动 (Jog): 用于手动方式移动轴，通过按钮使轴运行到目标点。
- 回零 (Homing / Reference): 用于定义轴的参考点或运行中回零;
- 限位 (Limits): 用于限制轴的速度、位置，包括硬限位与软限位;
- 程序步 (Traversing Blocks): 共有 64 个程序步，可自动连续执行一个完整的程序，也可单步执行;
- 直接设定值输入/手动设定值输入 (Direct Setpoint Input / MDI): 目标位置及运行速度可由上位机实时控制。

注意: 使用 S120 基本定位功能的前提，调试软件要为 Starter V4.0 或更高版本 / SCOUT V4.0 或更高版本；硬件版本要为 SINAMICS FW V2.4 HF2 或更高版本；并且安装 SCOUT V4.0 需要 STEP 7 版本至少为 V5.3.3.1 以上。

5.1 激活基本定位功能

S120 的定位功能必须在变频器离线配置中激活，步骤如下:

1. 离线
2. 配置
3. 驱动配置
4. 激活基本定位

图 5.1 基本定位功能激活步骤
配置结束后：

1. 在线，连接驱动器；
2. 读参数 r108.3=1, r108.4=1（activated）表示定位功能已被激活；
3. 从左边的项目导航栏中可以找到 Technology / Basic positioner 和 Position control。

![配置结束后示意图]

图 5.2 基本定位功能选项

定位功能激活后，可以使用软件上的控制面板（Control panel）或专家参数表（Expert list）进行设置。

如图 5.3 所示，使用控制面板进行设置的操作步骤：

1. 选择基本定位功能
2. 取得控制权限
3. 使能斜坡函数发生器、速度给定等条件
4. 选择“点动”
5. 设置点动速度、加速度
6. ON/OFF1 使能
7. 点动运行
8. 设定值/实时值监视

图 5.3 使用控制面板设置定位功能
5.2 点动（Jog）

S120 的基本定位功能的点动有两种方式:

- 速度方式（travel endless）: 点动按钮按下，轴以设定的速度运行直至按钮释放。
- 位置方式（travel incremental）: 点动按钮按下并保持，轴以设定的速度运行至目标位置后自动停止。

图 5.4 点动功能设置
注意：在执行点动功能时，应先使能变频器 ON/OFF1 (参数 P840)。在项目导航栏的 SERVO_02 的 Control logic 中设置，将 ON/OFF1 (P840) 连接到操作盒（Control box）的数字量 DI 0 端口上，即控制单元 CU320 的 r722.0 参数，如下图 5.6 所示。

图 5.5 点动数据设置

图 5.6 Control logic 设置使能变频器参数
如图 5.6 所示，在驱动器的控制逻辑选项（Control logic）中，参数 P840（ON/OFF1）、P844（OFF2）、P848（OFF3）分别代表了驱动器 S120 不同的三种停车方式:

- **ON/OFF1**: 正常停车，切断主设定值和附加给定值，可频繁使用；
- **OFF2**: 自由停车，封锁功率开关管的脉冲信号，即逆变器停车；
- **OFF3**: 快速停车，以最大减速度切断主设定值和附加给定值，适用于紧急情况下，不可频繁使用。

5.3 回零（Homing）

回参考点模式（回零模式）只有使用增量编码器（旋转编码器、正/余弦编码器或脉冲编码器）时需要，因每次上电时增量编码器与轴的机械位置之间没有任何确定的关系。因此轴都必须被移至预先定义好的零点位置，即执行回零功能。当使用绝对值编码器（Absolute）时，每次上电不需要重新回零。

S120 的回零有三种方式:

- 直接设定参考点（Reference）：对任意编码器均可
- 主动回零（Active Homing）：主要指增量编码器
- 被动回零（Passive Homing）：对任意编码器均可

5.3.1 设置参考点（Set Reference）

通过用户程序可设置任意位置为坐标原点。通常情况下，只有当系统即无接近开关又无编码器的零脉冲时，或当需要轴被设置为一个不同的位置时，才使用该方式。

操作步骤（已设定开关量输入点 DI 0 为 ON/OFF1 命令源 P840）

1. 进入“Homing”；
2. 连接一数字量输入点（DI 1）至参数 P2596 作为设置参考点信号位，该位上升沿有效；
3. 在专家参数表（Expert list）设定参考点位置坐标值 P2599（如 20）；
4. 闭合 DI 0 运行使能（在 Control logic 中设置，可以观察指示等颜色）；
5. 闭合 DI 1 激活“设置参考点”命令，于是该轴当前位置 r2521 立即被置为 P2599 中设定的值，如 R2521=0。

图 5.7 设置参考点
5.3.2 主动回零（Active Homing）

主动回零方式只适用于增量编码器，绝对值编码器只需要在初始化阶段进行一次编码器校准，以后不必做回零。

主动回零有三种方式:

- 仅用编码器零标志位（Encoder zero mark）回零
- 仅用外部零标志（External zero mark）回零
- 使用接近开关 + 编码器零标志位（Homing output cam + Zero mark）回零

1. 绝对值编码器的回零校准

如果使用绝对值编码器并且作主动回零时，会看到如下页面，只需在“Home Position coordinate”设置零点坐标值，然后点击按钮“Perform absolute value calibration”作编码器校准即可。

![Homing](image)

图 5.8 绝对值编码器的回零校准

2. 增量编码器的主动回零

依照图 5.9 进行增量编码器的主动回零设置，相关参数设定如下:

1. 进入“Homing”回零页面；
2. 定义开关量输入点 DI1 为开始寻参命令（参数 P2595=722.0）；
3. 回零方式选择主动回零 P2597=0；
4. 定义开关量输入点 DI2 为接近开关 P2612=722.1（粗脉冲）；
5. 指定轴运行极限点，如果回零过程中极限点到达（P2613 / P2614=0）则轴反转，若两点全为零则轴停止；
6. 指定回零方式：接近开关 + 编码器零脉冲；
7. 指定回零开始方向 P2604（0：正向；1：反向）。
回零动作过程，如图 5.9 所示，变频器运行 ON/OFF1 闭合，DI1 闭合，开始寻参过程：

- **Step1**：轴按照 P2604 定义的搜索方向，以最大加速度 P2572 加速至搜索速度 P2605，到达接近开关后（DI2 闭合），以最大减速度 P2573 减速停止，进入下一步（搜索编码器的零脉冲）；

- **Step2**：轴反向加速至速度 P2608，离开接近开关后（DI2 断开）遇到的第一个零脉冲后轴停止，进入下一步（回参考点）；

- **Step3**：轴反向加速以速度 P2611 运行偏置距离 P2600 后停在参考点位置处，完成主动回零过程。

### 5.3.3 被动回零（Passive Homing）

被动回零用于轴工作与任意定位状态时动态修改当前位置为零（例如，执行点动、执行程序步或执行 MDI 时），执行被动回零后并不影响轴当前的运行状态，轴并不是真正的走到零点而只是其当前位置被置为 0，重新开始计算位置。Passive Homing 又称为“Homing on the fly”。

- **P2511=0**：上升沿激活
- **P2511=1**：下降沿激活

图 5.10 被动回零设置
执行被动回零的前提条件：P2597=1。

绝对值编码器被动回零的参数设定：
- 打开“Homing”（回零）页面；
- 定义开始寻参命令 P2595 源（如开关量输入点 DI2）；
- 回零方式选择被动回零 P2597=1；
- 指定接近开关 Bero 为上升沿有效（如上图中 P2511）；
- 定义开关量输入点 DI10（只能为快速 I/O）为接近开关 P488=722.10。

动作过程：
- 变频器运行（使能 ON/OFF1），选择任意一种命令（如点动、程序步、MDI 等）轴，按照所选择的方式运行；
- 闭合 DI2，开始被动回零；
- 闭合快速开关 DI10（如图 5.11 所示，上边的曲线为该开关状态），可见位置实际值立即恢复为 0，然后重新计值（如图下边的曲线所示），在整个被动回零过程中轴的运行速度不受影响。

图 5.11 被动回零曲线
5.4 限位（Limit）

S120 中包含两种限位功能：软限位、硬限位。以限制轴运行范围，还可以对轴的运行速度、加速度进行限制。

如下图所示激活限位方式：
- 项目导航栏中选择限位功能块；
- 激活软限位 P2582=1，正/反向位置范围通过 P2578、P2579 设定；
- 激活硬限位 P2568=1，硬限位位置开关源 P2569、P2570；
- 最大速度：P2571；最大加速度：P2572；最大减速度：P2573。

![限位设置图](image)

图 5.12 限位设置

注意：
- 限位开关信号为“低”有效；到达硬限位后轴将以最大减速度 P2573 故障停车，即使故障复位后也只允许反向运行。

5.5 程序步（Traversing Blocks）

通过使用 Traversing Blocks “程序步”模式可以自动执行一个完整的定位程序，也可以实现单步控制；各程序步之间可以通过数字量输入信号切换，但只有当前程序步执行完后下一程序步才有效。S120 中提供了最多 64 个程序步供使用。
程序步执行步骤：
1. 项目导航栏中选择 Traversing Blocks 模式，设定开关量输入点 DI4 用于激活程序步功能；
2. 不拒绝任务 P2641=r722.2=1，没有停止命令 P2640=1，
   - 运行过程中 P2640=0 发出拒绝停止命令，则轴将以减速度 P2620 减速停车；
   - 若断开 DI3（r722.2=0）发出拒绝任务命令，则轴将以最大减速度 P2573 减速停车；
3. 按照工艺需要设定各个程序步参数，程序步代号决定程序的执行顺序，代号为“-1”表示该步步执行（初始代号全部为-1）；

图 5.13 程序步设置
4. 通过 6 个数字量输入点的不同组合选择需要的程序步；
5. 变频器运行，闭合 DI4（r722.3=1）激活 Traversing 方式（P2631=1 有效）轴按设定步骤运行。

图 5.14 程序步 Trace 位置曲线

5.6 手动数据输入（MDI）

Direct Setpoint Input / MDI（直接设定点输入方式/手动数据输入方式），MDI 的缩写来自于 NC 技术 “Manual Data Input”。使用 MDI 功能，可以很轻松地通过外部控制系统来实现复杂的定位程序，通过上位机控制的连续变化的位置、速度来满足我们的工艺需要。

MDI 有两种不同模式：
- 位置模式（position）：P2653=0，位置模式是指轴按照设定的位置、速度、加/减速运行。位置模式又可分为绝对位置（P2648=1）和相对位置（P2648=0）两种方式。
手动定位或速度模式（setting up）：P2653=1，速度模式是指轴按照设定的速度及加/减速运行，不考虑轴的实际位置。

激活 MDI 方式及参数配置，如图 5.15 所示，步骤如下：

1. 项目导航栏中选择直接数据输入 / MDI 模式；
2. 如程序步中所述：不拒绝任务 P2641=1，没有停止命令 P2640=1；
   - 运行过程中可通过断开联接与 P2640 的外部开关发出停止命令，则轴将以减速度 P2620 减速停车；
   - 若断开联接与 P2641 的外部开关发出拒绝任务命令，则轴将以最大减速 P2573 减速停车；
3. 设定开关量输入点 DI9 用于激活 MDI 功能（P2647 为“1”有效）；
4. 相关数据设置位置、速度、加/减速度（P2642 至 P2645）；
图 5.16 MDI 的速度、位置、加/减速度设置

5. 位置模式选择 P2653
   - 速度方式: P2653=1;
   - 位置方式: P2653=0;

6. 定位方式选择 P2648
   - 绝对位置方式: P2654=0, P2648=1;
   - 相对定位方式: P2654=**1* (16H), P2648=0;

7. 方向设定源: 正向 (P2651), 反向 (P2652);

8. 数据传输形式 (P2649) 及数据设定值确认命令源 (P2650)。

S120 中 MDI 的数据传输可采用两种形式:
   - 单步传输: P2649=0。单步传输是指 MDI 数据的传输依赖于参数 P2650 中选择的开关量信号，该命令为“沿”有效，每次执行完一个机器步后，需要再次施加上升沿，新的速度、位置等才能有效。
   - 连续传输: P2649=1。与单步传输不同，一旦激活连续数据传输，MDI 数据（位置、速度、加/减速度）可连续修改且立即有效而无需开关使能。这样就能通过上位机实时调整目标位置及轴的运行速度、加/减速度而不会停机。（注：连续数据传输仅适用于绝对定位方式）
调试参数：

- 运行命令源：P840（ON/OFF1）；
- 不拒绝数据传输：P2641=1；
- 无停止命令：P2640=1；
- MDI 位置模式：P2653=0 / 1；
- 选择传输模式：P2649=0 / 1；
- 数据设定值确认命令源：P2650（P2649=1 时无效）；
- 激活 MDI 模式的命令源：P2647；
- 选择绝对定位方式：P2648=1；
- 设置目标参数：P2690、P2691、P2692、P2693；
- 依次闭合开关 DI1 和 DI2，变频器运行后，激活 MDI 模式，轴按设定值运行。
6 通讯

本章将分别介绍驱动器 SINAMICS S120 与其他装置的两种通讯方式:

- S120 与 HMI 直接通讯
- 通过 DP 总线实现 S7-300 与 S120 的通讯

6.1 S120 与 HMI 直接通讯

HMI 可以与 SINAMICS S120 直接进行连接，用以修改目标位置、运行速度、加/减速度等参数，也可以用于模拟开关量信号控制起停等操作，而无需 PLC 等控制器。

硬件准备：一台插有 CP5512 的计算机（装有 SIMATIC S7 V5.3.3.1 以上版本、SCOUT V4.0 以上、WinCC flexible）和一台 SINAMICS S120 AC/AC 装置，本例中的 HMI 使用 WinCC flexible Runtime。

S120 与 HMI 的网络连接，如图 6.1 所示。

6.1.1 网络地址设置

设置驱动器 Sinamics S120 的 DP 地址有两种方法:

- 当 DP 地址开关全部置于 ON 或 OFF 时，其地址由参数 P0918 来设置;
- DP 地址开关设置地址时，按照二进制方式来设置：向上为 ON，向下为 OFF，排序为从左至右 0、1、2、3⋯，其对应地址数值为 $2^0$、$2^1$、$2^2$、...
2^2\cdots。例如：开关 0 和 2 置 ON，则 DP 地址为 2^0 + 2^2 = 1 + 4 = 5；若开关 0、1、2 都置 ON，则 DP 地址为 2^0 + 2^1 + 2^2 = 1 + 2 + 4 = 7。（注意：每次修改后需断电，再上电才有效）

PG/PC 的设置如下图所示：

1. 选择使用 DP 通讯卡
2. 设置 DP 参数
3. 在线诊断

图 6.2 PG/PC 设置
6.1.2 项目配置

在 Step 7 中插入 HMI Station 及驱动器，如图 6.3 所示，选择 HMI 中的“connections”进行项目配置。

图 6.3 Step 7 中插入 HMI Station
配置时必须注意：

1. Communication driver 选为“SIMATIC S7 – 300/400”；
2. Interface 选为“MPI/DP”；
3. 选中“Only Master on the Bus”；
4. PLC device 的“Address”为驱动器 S120 的网络地址；
5. Network 中的“Profile”设为 DP。
6.1.3 建立变量表

建立变量表，指针指向 S120 的参数如图 6.5 所示，DB/DBW 的设置规则如图 6.6 所示。

- HMI 与变频器直接连接时，Range 设为“DB”；
- 数据块 DB 号即为参数号，如 DB 2587 即代表变频器的参数 P2587；
- DBB、DBW、DBD 为 16 位十进制数代表该参数的总索引号。

图 6.5 建立变量表

图 6.6 DB/DBW 的设置规则
装置号的定义：
在 S120 中的驱动组 (Drive Group) 中的每个控制单元都称为 “Object（控制对象）”，如下图中的驱动组 “SINAMICS_S120_CU310_DP” 下的：
- “Control_Unit”，如 CU310；
- “Infeeds”，如 BLM、SLM、ALM 等；
- “Input/output component”，如 TM31 等；
- “Drives” 下的 “SERVO_02”、“SERVO_03” 等；

上述几种，都称为控制对象，它们在该驱动组中的代号就是 “装置号”。

查看装置号在 SCOUT 项目导航栏中选择驱动器，双击 Configuration，如下图 6.7 所示：

图 6.7 S120 的装置号

设定举例（通过 HMI 修改参数 P2098.1）：如上图所示，CU 的装置号为 1（000001）、Drive_1 的装置号为 2（000010）

- 对 CU 的 P2098.1 设置
  
  \[DB = 2098 \]
  
  \[DBW = 2^{10} + 1 = 1024 \times 1 + 1 = 1025\]

- 对 Drive_1 的 P2098.1 设置
  
  \[DB = 2098 \]
  
  \[DBW = 2^{11} + 1 = 1024 \times 2 + 1 = 2049\]

即，DBW = 1024 * 装置号 + 参数索引号。

建立变量表后即可定义 HMI 中的变量功能，编辑画面，变频器无需特殊的参数设定。
6.2 通过 DP 总线实现 S7-300 与 S120 的通讯

S7-300 与 SINAMICS S120 之间通过 DP 总线可进行周期性及非周期性数据通讯。

- 使用标准 S7 功能块 SFC14/SFC15，S7-300 通过 PROFIBUS 周期性通讯方式将控制字 1（CTW1）和主设定值（NSETP_B）发送至驱动器；
- 使用标准 S7 功能块 SFC58 / SFC59，可以实现非周期性数据交换，读取或写入驱动器的参数。

6.2.1 网络地址设置

如图 6.8 所示，S7-300 PLC 通过 DP 总线与 S120 相连。

图 6.8 S120 与 S7-300 的网络连接

1. 驱动装置的 PROFIBUS 通讯地址设置有两种方法：

- 在拨码开关全部拨到 OFF 或 ON 状态时可以利用参数 P918 设置地址，否则 P918 参数中设置的地址是无效的。
- 通过 CU 控制单元上的拨码开关实现地址设置，有效地址值为：1…126，本例中地址设置如图 6.9 所示。（注意：每次修改后需断电，再上电才有效。）
2. 在 S7-300/400 的硬件组态中设定的驱动装置站地址应与驱动装置的站地址一致，如下图所示。

图 6.9 S120 地址设置开关

图 6.10 硬件配置图

6.2.2 通讯报文设置

对于不同的驱动装置只有特定的报文结构能被选用，详细描述请参考：SINAMICS_S120_Commissioning_Manual。

如下表 6.1 为 S120 的常用报文，其中的报文格式 999 为用户自定义报文，当用户选择此报文格式时，电机的起、停控制位等需自己做关联，此时必须将 PLC 控制请求置 1（P854=1）。
### Drive object | Telegrams （P0922）
--- | ---
A_INF | 370, 999
B_INF | 370, 999
S_INF | 370, 999
SERVO | 2, 3, 4, 5, 6, 102, 103, 105, 106, 116, 999
SERVO（EPOS） | 7, 110, 999
SERVO（extension, setpoint channel） | 1, 2, 3, 4, 5, 6, 102, 103, 105, 106, 116, 999
VECTOR | 1, 2, 3, 4, 20, 352, 999
TM15 | No telegram default defined
TM31 | No telegram default defined
TM41 | 3, 999
TB30 | No telegram default defined
CU_S | 390, 391, 999

表 6.1 S120 常用报文

注意：在S7-300硬件配置时根据需要配置报文结构，配置结束后进行编译保存；之后打开调试软件 Scout，核对报文结构是否一致，若不一致需在项目中打开“configuration”，做调整后点击“Transfer to HW config”按钮。

### 6.2.3 用 DP 总线对电机起、停及速度控制

S7-300 PLC 通过 PROFIBUS 周期性通讯方式将控制字 1（CTW1）和主设定值（NSETP_B）发送给驱动器。

1. 控制字中 Bit0 做电机的起、停控制。
2. 主设定值为速度设定值，频率设定值和实际值要经过标准化，使 4000H（十六进制）对应于 100%，发送的最高频率（最大值）为 7FFFH 对应 200%，可以在 P2000 中修改参考频率（缺省值为 50Hz）。
3. 当组态的报文结构 PZD=2 或自由报文 999 时，在 S7-300 中可用“MOVE”指令进行数据传送；当组态的报文结构 PZD>2 时，在 S7-300 中需调用 SFC14 和 SFC15 系统功能块。
   - SFC14（“DPRD_DAT”）用于读 Profibus 从站的过程数据；
   - SFC15（“DPWR_DAT”）用于将过程数据写入 ProfiBus 从站。
以“SERVO_02”控制字、主设定值的发送及状态字、实际频率的读取程序为例：

1. 控制驱动器运行：通过先发送控制字（STW1）047E，然后发送047F至启动驱动器，该数据控制字在DB10.DBW8（如图6.11所示）中指定，主设定值在DB10.DBD10中设定，运行信号为M1.0。这些值均通过变量表VAT_2设定及监控，控制程序如图6.12所示。

![图6.11 DB10数据块中的状态字和控制字](image)

![图6.12 OB1中的控制程序](image)
2. 停止驱动器：应发送控制字 047E 至驱动器。

3. 读取驱动器状态字及频率实际值：PLC 接收状态字 1（ZSW1）存放在 DB10.DBW0 中；接收传来的频率实际值存放在 DB10.DBD2 中。

6.2.4 驱动器参数的读取及写入

1. 扩展 PROFIBUS DP 功能（DPV1）非周期性数据传送模式允许：
   - 交换大量的用户数据（最多 240 bytes）；
   - 用 DPV1 的功能 Read 和 Write 可以实现非周期性数据交换。

2. 参数请求及参数应答的结构：

参数请求包括三部分：请求标题、参数地址及参数值。

<table>
<thead>
<tr>
<th>字节</th>
<th>字节</th>
</tr>
</thead>
<tbody>
<tr>
<td>请求标题</td>
<td>请求参考</td>
</tr>
<tr>
<td>设备 ID</td>
<td>参数 ID</td>
</tr>
<tr>
<td>第 1 个参数地址</td>
<td>属性</td>
</tr>
<tr>
<td>参考号 (PNU)</td>
<td>元素数量</td>
</tr>
<tr>
<td>下标</td>
<td>......</td>
</tr>
<tr>
<td>第 n 个参数地址</td>
<td>属性</td>
</tr>
<tr>
<td>参考号 (PNU)</td>
<td>元素数量</td>
</tr>
<tr>
<td>下标</td>
<td>......</td>
</tr>
<tr>
<td>第 1 个参数值</td>
<td>格式</td>
</tr>
<tr>
<td>数值</td>
<td>元素数量</td>
</tr>
<tr>
<td>......</td>
<td>......</td>
</tr>
<tr>
<td>第 n 个参数值</td>
<td>格式</td>
</tr>
<tr>
<td>数值</td>
<td>元素数量</td>
</tr>
</tbody>
</table>

表 5.2 参数请求格式

<table>
<thead>
<tr>
<th>字节</th>
<th>字节</th>
</tr>
</thead>
<tbody>
<tr>
<td>应答标题</td>
<td>应答参考镜像</td>
</tr>
<tr>
<td>设备 ID 镜像</td>
<td>参数数量</td>
</tr>
<tr>
<td>第 1 个参数值</td>
<td>格式</td>
</tr>
<tr>
<td>数值或错误值</td>
<td>元素数量</td>
</tr>
<tr>
<td>......</td>
<td>......</td>
</tr>
<tr>
<td>第 n 个参数值</td>
<td>格式</td>
</tr>
<tr>
<td>数值或错误值</td>
<td>元素数量</td>
</tr>
</tbody>
</table>

表 6.3 参数应答格式
<table>
<thead>
<tr>
<th>项目</th>
<th>数据类型</th>
<th>数值</th>
<th>注释</th>
</tr>
</thead>
<tbody>
<tr>
<td>请求参考</td>
<td>无符号 8 位数</td>
<td>0x01…0xFF</td>
<td>每一次新的请求主站改变“请求参考”，从站在其应答时镜像“请求参考”</td>
</tr>
<tr>
<td>请求 ID</td>
<td>无符号 8 位数</td>
<td>0x01</td>
<td>读请求</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0x02</td>
<td>写请求</td>
</tr>
<tr>
<td>应答 ID</td>
<td>无符号 8 位数</td>
<td>0x01</td>
<td>读请求（+）</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0x02</td>
<td>写请求（+）</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0x081</td>
<td>读请求（-）</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0x082</td>
<td>写请求（-）</td>
</tr>
<tr>
<td>轴</td>
<td>无符号 8 位数</td>
<td>0x01…0xFF</td>
<td>对于多个驱动单元设定相应设备 ID</td>
</tr>
<tr>
<td>参数数量</td>
<td>无符号 8 位数</td>
<td>0x01…0x27</td>
<td>NO.1…39，对于请求多个参数时的参数数量，=1 为请求一个参数</td>
</tr>
<tr>
<td>属性</td>
<td>无符号 8 位数</td>
<td>0x10</td>
<td>数值型</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0x20</td>
<td>描述型（不可用）</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0x30</td>
<td>文本型（不可用）</td>
</tr>
<tr>
<td>元素数量</td>
<td>无符号 8 位数</td>
<td>0x00</td>
<td>特定功能</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0x01…0x75</td>
<td>No.1…117，数组数量</td>
</tr>
<tr>
<td>参数号</td>
<td>无符号 8 位数</td>
<td>0x0001…0xFFFF</td>
<td>No.1…65535</td>
</tr>
<tr>
<td>下标</td>
<td>无符号 8 位数</td>
<td>0x0001…0xFFFF</td>
<td>No.1…65535</td>
</tr>
<tr>
<td>格式</td>
<td>无符号 8 位数</td>
<td>0x02</td>
<td>8 位整型数</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0x03</td>
<td>16 位整型数</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0x04</td>
<td>32 位整型数</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0x05</td>
<td>无符号 8 位数</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0x06</td>
<td>无符号 16 位数</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0x07</td>
<td>无符号 32 位数</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0x08</td>
<td>浮点型</td>
</tr>
<tr>
<td>Other values</td>
<td>无符号 8 位数</td>
<td>0x40</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0x41</td>
<td>字节</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0x42</td>
<td>字</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0x43</td>
<td>双字</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0x44</td>
<td>错误</td>
</tr>
<tr>
<td>数值数量</td>
<td>无符号 8 位数</td>
<td>0x01…0xFEa</td>
<td>0…234</td>
</tr>
<tr>
<td>数值或错误值</td>
<td>无符号 8 位数</td>
<td>0x0001…0xFFFF</td>
<td>读或写的参数值，应答错误值</td>
</tr>
</tbody>
</table>

表 6.4 参数请求及应答描述
### 表6.5 在DPV1参数应答中的错误值描述

<table>
<thead>
<tr>
<th>错误值</th>
<th>含义</th>
<th>注释</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00</td>
<td>无效的参数值</td>
<td>获取不存在的参数</td>
</tr>
<tr>
<td>0x01</td>
<td>参数值不能被改变</td>
<td>修改了一个不允许修改的参数</td>
</tr>
<tr>
<td>0x02</td>
<td>超出上下限</td>
<td>修改的数值超限</td>
</tr>
<tr>
<td>0x03</td>
<td>无效的下标</td>
<td>获取不存在的小标</td>
</tr>
<tr>
<td>0x04</td>
<td>没有数组</td>
<td>用下标获取不存在下标参数</td>
</tr>
<tr>
<td>0x05</td>
<td>数据类型不正确</td>
<td></td>
</tr>
<tr>
<td>0x06</td>
<td>无效的设定操作</td>
<td></td>
</tr>
<tr>
<td>0x07</td>
<td>描述的元素不能被修改</td>
<td>修改了不能被修改的元素</td>
</tr>
<tr>
<td>0x09</td>
<td>没有描述的数据</td>
<td>获取不存在的参数</td>
</tr>
<tr>
<td>0x0B</td>
<td>没有操作权限</td>
<td></td>
</tr>
<tr>
<td>0x0F</td>
<td>下一个数组不存在</td>
<td>获取下一个不存在的数组</td>
</tr>
<tr>
<td>0x11</td>
<td>变频器运行时不能执行请求任务</td>
<td></td>
</tr>
<tr>
<td>0x14</td>
<td>无效数值</td>
<td></td>
</tr>
<tr>
<td>0x15</td>
<td>应答长度太长</td>
<td>当前应答长度超出最大传输长度</td>
</tr>
<tr>
<td>0x16</td>
<td>无效的参数地址</td>
<td></td>
</tr>
<tr>
<td>0x17</td>
<td>无效的数据格式</td>
<td></td>
</tr>
<tr>
<td>0x18</td>
<td>数据数量不一致</td>
<td></td>
</tr>
<tr>
<td>0x19</td>
<td>驱动装置不存在</td>
<td></td>
</tr>
<tr>
<td>0x20</td>
<td>文字类型的参数不能被改变</td>
<td></td>
</tr>
</tbody>
</table>

### 3. S7-300 PLC通过PROFIBUS非周期性通讯方式读取驱动器参数

PLC读取驱动器参数时必须使用两个功能块SFC58/SFC59，如图6.13所示。

举例如下：

- 使用标志位M10.0及功能SFC58块将写请求（数据集RECORDDB1）发送至驱动器，如图6.14所示。将M10.0设定为数值1启动写请求，当写请求完成后必须将该请求置0结束该请求。MW108（RET_VAL）显示错误代码，用于表示功能处理时发生的错误。

- 使用标志位M10.1及功能SFC59块将读请求发送至驱动器，驱动器返回参数值响应（响应块DB2），如图6.15所示。将M10.1设定为数值1启动读请求，当读请求完成后必须将该请求置0结束该请求。MW110（RET_VAL）显示包括错误代码，用于表示功能处理时发生的错误。
写 “读取驱动器参数” 请求
写请求完成后必须将该请求置 0

图 6.13 读取驱动器参数程序

读取驱动器参数
读请求完成后必须将请求置 0

图 6.14 写请求数据集 DB1
4. S7-300 PLC 通过 PROFIBUS 非周期性通讯方式写入驱动器参数

举例如下:

PLC 写参数时只需使用 SFC58，在本项目的 Network 3 中发送写请求 DB1 到驱动器，如图 6.16 所示的写请求数据集 DB1：PLC 读“写参数”响应时需使用 SFC59，在本项目中读取驱动器返回的参数值数据块为 DB2，如图 6.17 所示。程序参见图 6.18。

- 将 M10.0 设定为数值 1 启动写请求，当写请求完成后必须将该请求置 0，结束该请求。MW108 (RET_VAL) 显示错误代码，用于表示功能处理时发生的错误。
- 将 M10.1 设定为数值 1 启动读请求，当读请求完成后必须将该请求置 0，结束该请求。MW110 (RET_VAL) 显示包括错误代码。用于表示功能处理时发生的错误。

<table>
<thead>
<tr>
<th>Address</th>
<th>Name</th>
<th>Type</th>
<th>Initial value</th>
<th>Actual value</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>Request_reference</td>
<td>STTR</td>
<td>$16440</td>
<td>$16440</td>
<td>request number</td>
</tr>
<tr>
<td>1.0</td>
<td>Request_ID</td>
<td>STTR</td>
<td>$1682</td>
<td>$1682</td>
<td>request parameter = 1; change</td>
</tr>
<tr>
<td>2.0</td>
<td>Axis</td>
<td>STTR</td>
<td>$1640</td>
<td>$1640</td>
<td>axis mirror</td>
</tr>
<tr>
<td>3.0</td>
<td>No_of_parameters</td>
<td>STTR</td>
<td>$16#81</td>
<td>$16#80</td>
<td>number of parameter which should be written</td>
</tr>
<tr>
<td>4.0</td>
<td>Attribute</td>
<td>STTR</td>
<td>$16#10</td>
<td>$16#10</td>
<td>value = 10: description = 20</td>
</tr>
<tr>
<td>5.0</td>
<td>No_of_elements</td>
<td>STTR</td>
<td>$16#81</td>
<td>$16#81</td>
<td>number of indices</td>
</tr>
<tr>
<td>6.0</td>
<td>Parameter_number</td>
<td>WORD</td>
<td>$16#4C1</td>
<td>$16#804C1</td>
<td>parameter P1217: 1217 dec = 4</td>
</tr>
<tr>
<td>8.0</td>
<td>Subindex</td>
<td>WORD</td>
<td>$16#00</td>
<td>$16#0000</td>
<td>index 0</td>
</tr>
<tr>
<td>10.0</td>
<td>Format</td>
<td>STTR</td>
<td>$16#80</td>
<td>$16#80</td>
<td>data type of parameter P1217</td>
</tr>
<tr>
<td>11.0</td>
<td>No_of_values</td>
<td>STTR</td>
<td>$16#81</td>
<td>$16#80</td>
<td>number of values = number of values + 1</td>
</tr>
<tr>
<td>12.0</td>
<td>Value</td>
<td>REAL</td>
<td>5.0000000e+002</td>
<td>500.0</td>
<td>maximum frequency from 50 Hz</td>
</tr>
</tbody>
</table>

图 6.16 写请求数据集 DB1
图 6.17 驱动器返回参数值响应

### Table: Parameter Values Response

<table>
<thead>
<tr>
<th>Address</th>
<th>Name</th>
<th>Type</th>
<th>Initial Value</th>
<th>Actual Value</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>Request_reference</td>
<td>BYT</td>
<td>B$16#00</td>
<td>B$16#40</td>
<td>request number</td>
</tr>
<tr>
<td>1.0</td>
<td>Response_ID</td>
<td>BYT</td>
<td>B$16#02</td>
<td>B$16#02</td>
<td>request para</td>
</tr>
<tr>
<td>2.0</td>
<td>Axis_mirrored</td>
<td>BYT</td>
<td>B$16#00</td>
<td>B$16#02</td>
<td>Axis mirrored</td>
</tr>
<tr>
<td>3.0</td>
<td>No_of_parameters</td>
<td>BYT</td>
<td>B$16#00</td>
<td>B$16#01</td>
<td>response about</td>
</tr>
</tbody>
</table>

图 6.18 写入驱动器参数程序
7  DCC 功能

7.1  DCC 概述

DCC（Drive Control Chart）驱动控制图标，是西门子专门为 SINAMICS 变频器和 SIMOTION 运动控制器提供的一种可编程环境，是用图形化的编程语言（CFC）来实现与驱动系统相关功能的工具包，实现逻辑、运算以及工艺功能。

DCC 功能块由 DCC 编辑器和 DCC 功能库组成。DCC 编辑器是一种基于 CFC 的编程系统，可以自由组合各种功能块，实现要求的功能；DCC 功能库包含了预制定的功能块，有 SINAMICS 库和 SIMOTION 库。

DCC 可以分为 DCC-SIMOTION 和 DCC-SINAMICS 两种版本，分别用于：SIMOTION P / C / D 和 SINAMICS S120。

适用版本：SINAMICS / SIMOTION（V2.5x / V4.1x 以上）。

DCC 的基本功能：

- 逻辑运算功能（Logic），逻辑与、或、非、计数、定时等；
- 运算功能（Arithmetic），加减乘除、数值取反、坐标取值等；
- 数据类型转换（Conversion），位与字、整数/实数/字之间的转换等；
- 闭环控制（Closed-loop），如 PI 控制器、积分器、斜坡发生器等；
- 工艺功能（Technology），如卷径计算、惯量计算、CAM 控制器等；
- 系统功能（System），数据取样、读写参数等。

DCC 组态编译流程：

1. 添加工艺包；
2. 将 DCC 相关的库功能文件导入 DCC 编辑器中；
3. 调用 DCC 编辑器，在功能库中选择所需要的功能块进行编程；
4. 离线编程，分配执行组采样周期；
5. 编译，下载到驱动设备 SINAMICS 的控制器 CU 中或 SIMOTION 中；
6. 运行并调试。
7.2 DCC 实验演示

1. 添加工艺包

如下图所示, 在线执行添加工艺包, 右键项目中的 S120 设备选择 “Select Technology Packages”, 选择 “load into target device”, 点击 “Execute now”执行工艺包装载。结束后, 可以在 “Version (online)” 中看到当前驱动运行的 DCC 版本。

![添加工艺包图](image.png)

图 7.1 添加工艺包

2. 导入库文件

项目第一次使用 DCC 时需要导入库文件, 否则打开后没有任何功能块, 步骤如下图:

- 离线;
- 点击 “Insert DCC charts”
- 选择库功能,
- 导入需要的库文件;
- 选择语言, 并接受。

107
图 7.2 导入库文件
3. 离线编程，分配执行组采样周期

编写 DCC chart 程序分配执行组，并为其设置采样周期后，CU 才能执行。执行组有两种：固定执行组和自由执行组。

固定执行组：采样时间与系统功能绑定。

自由执行组：采样时间 P21000 可设为硬件采样时间 (r21002) 或软件采样时间 (r21003) 的整数倍。最小有效采样周期为 1ms，最大为 r21003。

图 7.3 分配采样周期

离线时，在项目导航栏右键 DCC_1，选择 “Set execution groups”，选择适当的采样周期，编译保存。

选择采样周期应该注意：

DCC 的运算处理会加重控制单元 CU 的负荷，影响运算能力。带有 DCC 程序功能块的 SINAMICS 不能实现最大组态。CU 的计算能力取决于：执行组数量、各执行组的采样周期、所调用功能块的数量、所调用功能块的形式等。可以从 CU 的 r9976 读取当前配置下系统的负荷。
对于带有 performance 1 的 CU，其系统负荷平均值（r9976.1）、最大值（r9976.5）均应低于 85%；超过 90% 会有 A50512 的报警。在检查 CU 的负荷时应该注意，只有在满足下列条件时负荷才最大：

- 所有设备都在运行状态下
- 所有必要的功能都激活
- 激活数据同步

图 7.4 DCC 程序及参数列表新增加的参数
编写 DCC 程序时，需要注意功能块管脚的输入输出端的属性。如：

**Watched**（监视），勾选后可在线监视管脚的状态。

参数定义：

- 直接赋值型参数（只用于监视、记录波形）

  参数定义符，@:
  参数号，如 4，即为参数 P21504（用户自定义的参数从 P21500 开始）
  参数名，如 sin。
  写法： @4 sinus

- BICO 型参数（除监视、记录波形，还可用于参数的 BICO 互连）

  参数定义符，@:
  参数号，如 3，即为参数 P21503；
  参数名，如 cosinus。
  写法： @*3 cosinus

4. 编译并下载

![图 7.5 编译并下载程序](image)
如下图，Sett（P21502）为启动积分器的位，启动后根据积分器的工作原理生成正余弦曲线，可将驱动的速度设定值参数 P1155 关联到 BICO 型的参数 P21503，即速度设定按照余弦曲线变化，注意调整余弦曲线的幅值，如图 7.4 中所做的正反向限幅，最大速度即为 0.1 * P2900 = 0.1*6000 = 600 RPM。

图 7.6 启动积分器

图 7.7 生成的正余弦曲线及驱动实际速度曲线
参考文献及联系人

[1] SINAMICS S120 入门手册（2008 年版）  西门子运动控制部

如有任何问题，请联系：

西门子（中国）有限公司
工业业务领域，驱动技术集团
运动控制部，应用中心
解决方案小组

地址：北京市朝阳区望京中环南路 7 号
电话：010 - 64765630，传真：010 - 64764973
电子信箱：qinglin.wang@siemens.com
公司网址：www.siemens.com.cn