FUNCTION_BLOCK "DRVHandling"

VAR_INPUT

 BUS_Address : INT := 3;
//Node-Address of Profibus

 NUDB : INT := 100;//No. of User-DataBlock

 PERI_Address: INT := 8;
//Periphery - address defined in hardware(PKW)

 SW_Enable : BOOL ;
//Drive enable (Software-Enable)

 Reset_Fault : BOOL ;
//Reset Fault

 Jog_for : BOOL ;
//Jog +

 Jog_back : BOOL ;
//Jog -

 Ref_Start : BOOL ;
//Start reference move

 Start_MT : BOOL ;
//Motion Task MT

 Fast_Stop_Disable : BOOL ;//Fast-Stop with disable drive

 Fast_Stop_Enable : BOOL ;//Fast-Stop without disabling drive

 Pause : BOOL ;
 //Pause in Motion Task

 Position_Reset : BOOL ;
//Reset position

 Accept_Values : BOOL ;
//Accept new values

 Init_Drive : BOOL ;
//Initalize drive

END_VAR

VAR_OUTPUT

 Actual_Speed : WORD ;
//Actual speed

 Actual_Position : DWORD ;
//Actual position

 Manufac_Stat : WORD ;
//Manufacturer Status

 ZSW : WORD ;
 //Status word of axis

 Error : BOOL ;
 //Error-bit

 Pos_Error : BOOL ;
 //Warning Pos.error

 Moving : BOOL ;
 //Motor is moving

 Reference_ok: BOOL ;
 //Reference ok

 In_Position : BOOL ;
 //In position

 ACK_ready_ok: BOOL ;
 //Acknowledge operation ready without fault

 ACK_ready_fault : BOOL ;
//Acknowledge operation ready with fault

 MT_active : BOOL ;
//Motion Task active

END_VAR

VAR

 nudbnr : WORD ;

 NUDB_Adr : WORD ;

 conv_stw : WORD ;

 conv_stat: WORD ;

 conv_zsw : WORD ;

 conv_akku1 : DWORD ;

 kfeh : BOOL ;

 busy : BOOL ;

 ofeh : BOOL ;

 mfeh : BOOL ;

 send : BOOL ;

 redy : BOOL ;

 status : WORD ;

 parameter_nr : WORD ;

 parameter_index : BYTE ;

 read_write_flag : BOOL ;

 start_flag : BOOL ;

 aktiv : BOOL ;

 fertig : BOOL ;

 fehler : BOOL ;

 ref_ok : BOOL ;

 parametertyp : BYTE ;

 parameter_high: WORD ;

 parameter_low : WORD ;

 reset_flag : BOOL ;

 pf_ref_start : BOOL ;

 ref_art_ok : BOOL ;

 ba_ok : BOOL ;

 enable_ok : BOOL ;

 init_ok : BOOL ;

 null_ok : BOOL ;

 sypa : INT ;

 modus : INT := 2;//Modus

 FlankeP : BOOL ;
// Bitmerker f黵 positive Flanke

 FlankeN : BOOL ;
// Bitmerker f黵 negative Flanke

 FlaMemP : BOOL ;
// Bitmerker f黵 positive Flanke

 FlaMemN : BOOL ;
// Bitmerker f黵 positive Flanke

 FlaP_RI : BOOL ;
// Bitmerker f黵 positive Flanke

 FlaMemP_RI : BOOL;// Bitmerker f黵 positive Flanke

 Init_Drive_Flag : BOOL ;
//Flag for Initalization Drive

 Accept_Values_Flag : BOOL;//Flag to accept new values

 Bit_Step : ARRAY [1 .. 16] OF //Status Bits

 BOOL ;

 TaccOK : BOOL ;
//Beschleunigungszeitwert 黚ernommen

 TdecOK : BOOL ;
//Verz鰃erungszeitwert 黚ernommen

 PNU_OK : BOOL ;
//PNU und Parameter 黚ernommen

 ZERO_OK : BOOL ;
//Nulltelegramm geschrieben

 NrKSTW : WORD ;

 PKWReceive : ARRAY [1 .. 8] OF BYTE ;

 PZDReceive : ARRAY [1 .. 12] OF BYTE ;

 PKWSend : ARRAY [1 .. 4] OF WORD ;

 PZDSend : ARRAY [1 .. 6] OF WORD ;

 PKWPeriStart : WORD ;

 PZDPeriStart : WORD ;

 ErgPZD : INT ;

 ErgPKW : INT ;

 SendPKW : INT ;

 Empf : INT ;

 Stop_MT : BOOL ;

 pf_flag_ref : BOOL ;

 pf_flag_values : BOOL ;

 Accept_flag : BOOL ;

 te1 : WORD ;

 te2 : WORD ;

END_VAR

VAR_TEMP

 conv_nudb : WORD ;

END_VAR

BEGIN

NETWORK

TITLE =Preset adresses User data block (NUDB)

 L #NUDB;

 T #NUDB_Adr;

 L 0;

 T #NrKSTW;

 L #PERI_Address; // startaddress PKW in periphery

 T #PKWPeriStart;

 L #PERI_Address;

 L 8;

 +I ;

 T #PZDPeriStart; // startaddress PZD in periphery

NETWORK

TITLE =Select function Reset Fault and Warnings

 L #NUDB_Adr;

 T #conv_nudb;

 auf DB [#conv_nudb]; // UserData DB

 U #Reset_Fault; //Reset errors , warnings

 = DBX 27.7;

 U #Reset_Fault;

 U DBX 47.7; // error / fault

 = DBX 26.5; // Warning

NETWORK

TITLE =Set Message Outputs

 O DBX 47.3;

 = #Error;

 U DBX 46.0;

 = #Pos_Error;

 UN DBX 54.4; // Motor is moving

 = #Moving;

 U DBX 55.1; // Reference is done and ok

 U DBX 55.3;

 S #Reference_ok;

 UN DBX 55.1;

 R #Reference_ok;

 UN DBX 55.0; // drive in position (depending of PEINPOS)

 U DBX 55.3;

 U #Reference_ok;

 = #In_Position;

 U DBX 55.0; // Motion Task active

 = #MT_active;

NETWORK

TITLE =

 UN #Init_Drive;

 U #Accept_Values;

 = #Accept_Values_Flag;

 U #Init_Drive;

 = #Init_Drive_Flag;

NETWORK

TITLE =Initialisierung (Nulltelegramm)

 U #Init_Drive_Flag;

 UN #FlaMemP_RI;

 = #FlaP_RI;

 U #FlaP_RI;

 S #FlaMemP_RI;

 UN #Init_Drive_Flag;

 R #FlaMemP_RI;

 U #ba_ok;

 UN #Init_Drive_Flag;

 R #Bit_Step[5];

 R #Bit_Step[6];

 U #Bit_Step[5];

 U #fehler;

 R #Bit_Step[5];

 U #Bit_Step[5];

 U #fertig;

 UN #aktiv;

 S #Bit_Step[6];

 R #Bit_Step[5];

 U #Bit_Step[4];

 UN #fertig;

 U #aktiv;

 S #Bit_Step[5];

 R #Bit_Step[4];

 U #Bit_Step[3];

 UN #fertig;

 UN #aktiv;

 S #Bit_Step[4];

 R #Bit_Step[3];

 U #Bit_Step[2];

 UN #aktiv;

 U #fertig;

 S #Bit_Step[3];

 R #Bit_Step[2];

 U #Bit_Step[1];

 U #aktiv;

 UN #fertig;

 S #Bit_Step[2];

 R #Bit_Step[1];

 U #Init_Drive_Flag; //Reset bei Fehlern und Anlauf

 UN #ba_ok;

 UN #Bit_Step[1];

 UN #Bit_Step[2];

 UN #Bit_Step[3];

 UN #Bit_Step[4];

 UN #Bit_Step[5];

 UN #Bit_Step[6];

 S #Bit_Step[1];

 U #FlaP_RI;

 R #Bit_Step[1];

 R #Bit_Step[2];

 R #Bit_Step[3];

 R #Bit_Step[4];

 R #Bit_Step[5];

 R #Bit_Step[6];

 R #fertig;

 R #start_flag;

 R #read_write_flag;

 R #ba_ok;

 R DBX 26.2;

 UN #FlaP_RI;

 SPB M001;

 L 0;

 T DBD 18;

 T DBD 22;

 T DBD 26;

 T DBD 30;

 T DBD 34;

M001: NOP 0;

 U #fehler;

 R #start_flag;

 R #read_write_flag;

 UN #Bit_Step[1];

 UN #Bit_Step[2];

 UN #Bit_Step[3];

 SPB M002;

 L 3;

 T #parametertyp;

M002: NOP 0;

 U #Bit_Step[1];

 S #read_write_flag;

 S #start_flag;

 U #Bit_Step[3];

 R #start_flag;

 R #read_write_flag;

 UN #Bit_Step[4];

 UN #Bit_Step[5];

 UN #Bit_Step[6];

 SPB M003;

 L 2;

 T #parametertyp;

 L W#16#3A2;

 T #parameter_nr;

 L DBW 80;

 T #parameter_low;

 L DBW 80;

 L 0;

 <I ;

 SPB M054;

 L 0;

 SPA M055;

M054: NOP 0;

 L W#16#FFFF;

M055: NOP 0;

 T #parameter_high;

M003: NOP 0;

 U #Bit_Step[4];

 S #read_write_flag;

 S #start_flag;

 U #Bit_Step[6];

 R #start_flag;

 R #read_write_flag;

 S #ba_ok;

NETWORK

TITLE =Setting Values for ACC and DCC and PNU

//Write Parameter with PNU declared in DBNU.DBW 84 and the belonging value in

//DBNU.DBD 86.

 U #Accept_Values_Flag;

 UN #pf_flag_values;

 = #Accept_flag;

 S #pf_flag_values;

 UN #Accept_Values_Flag;

 R #pf_flag_values;

 UN #Accept_Values_Flag;

 R #PNU_OK;

 R #ZERO_OK;

 UN #Accept_flag;

 SPB M004;

 U #PNU_OK;

 SPB M004;

 U #ZERO_OK;

 SPB M005;

 L 0;

 T DBW 18;

 U(;

 L DBW 38;

 L 0;

 ==I ;

) ;

 U #Accept_Values_Flag;

 UN #PNU_OK;

 S #ZERO_OK;

M005: NOP 0;

 UN #ZERO_OK;

 SPB M004;

 L 2;

 T #parametertyp;

 L W#16#1;

 T #parameter_index;

 L DBW 84; //Betriebsartenumschaltung ??

 L W#16#3A2; //PNU930

 <>I ;

 SPB M006;

 L DBW 84;

 T #parameter_nr;

 U DBX 26.2; // PZD sperren (Bit 10 im STW)

 R DBX 26.2;

 SPA M007;

M006: NOP 0;

 UN DBX 83.2;

 SPB M008;

 L DBW 84;

 T #parameter_nr;

 SPA M009;

M008: NOP 0;

 L DBW 84;

 + 1600;

 T #parameter_nr;

M009: NOP 0;

 L #parameter_nr;

 L 2047;

 <=I ;

 SPB M007;

 L #parameter_nr;

 + -400;

 T #parameter_nr;

 L W#16#11;

 T #parameter_index;

M007: NOP 0;

 U #Accept_flag;

 U DBX 83.1;

 S #read_write_flag;

 U #Accept_flag;

 UN DBX 83.1;

 R #read_write_flag;

 UN #read_write_flag;

 SPB M010;

 L DBW 86;

 T #parameter_high;

 L DBW 88;

 T #parameter_low;

 SPA M011;

M010: NOP 0;

 L DBW 42;

 T DBW 76;

 L DBW 44;

 T DBW 78;

M011: NOP 0;

 U #Accept_Values_Flag;

 S #start_flag;

 U #ZERO_OK;

 U #fertig;

 U #Accept_Values_Flag;

 S #PNU_OK;

 R #start_flag;

 R #ZERO_OK;

 NOP 0;

 UN #PNU_OK;

 SPB M004;

 L 3;

 T #parametertyp;

 UN #ZERO_OK;

 S #read_write_flag;

 U #fertig;

 U #Accept_Values_Flag;

 U #PNU_OK;

 S #ZERO_OK;

 R #start_flag;

 S DBX 26.2;

 UN #fertig;

 U #Accept_Values_Flag;

 U #PNU_OK;

 S #start_flag;

 S DBX 26.2; // PZD freigeben (Bit10 im STW)

M004: NOP 0;

 U #Bit_Step[6];

 U #Init_Drive_Flag;

 O ;

 U #PNU_OK;

 U #ZERO_OK;

 UN #fehler;

 = #ACK_ready_ok;

 U #fehler;

 U(;

 O #PNU_OK;

 O #ZERO_OK;

) ;

 O(;

 U DBX 38.4;

 U DBX 38.6;

 U(;

 O #Accept_Values;

 O #Init_Drive;

) ;

) ;

 = #ACK_ready_fault;

NETWORK

TITLE =Betriebsartenanwahl

 U #SW_Enable;

 U #ba_ok;

 = DBX 27.0;

 = DBX 27.1;

 U DBX 47.0;

 U DBX 47.1;

 U #SW_Enable;

 = DBX 27.3;

 U #ba_ok;

 U DBX 27.0; // STW Bit0 : Einschalten

 U DBX 27.3; // STW Bit3 : Betrieb freigeben

 U DBX 47.2;

 SPB M012;

 ON #SW_Enable;

 ON #ba_ok;

 SPB M013;

 U #ba_ok;

 U DBX 27.0; // STW Bit0 : Einschalten

 U DBX 27.3; // STW Bit3 : Betrieb freigeben

 SPB M012;

M013: NOP 0;

 UN #SW_Enable;

 R #enable_ok;

 L DBW 38;

 SRW 12;

 L B#16#7;

 ==I ;

 R #init_ok;

 SPA M014;

M012: NOP 0;

NETWORK

TITLE =Antrieb enablen

 U #enable_ok;

 SPB M015;

 L DBW 26;

 L W#16#43F; //Enablen des Servostar (Hardwareenable muss anstehen !!!)

 OW ;

 T DBW 26; // STW beschreiben

 U DBX 47.0;

 U DBX 47.1;

 U DBX 47.5;

 UN DBX 47.6;

 S #enable_ok;

 ON #SW_Enable;

 O DBX 47.6;

 R #enable_ok;

 U #enable_ok;

 SPB M015;

 UN #enable_ok;

 R DBX 27.3;

 SPA M014;

M015: NOP 0;

NETWORK

TITLE =Tippbetrieb

 UN #Jog_for;

 UN #Jog_back;

 O ;

 U #Jog_for;

 U #Jog_back;

 SPB M016;

 U #Jog_back; //Tippen r點kw鋜ts angew鋒lt

 SPB M017;

 L DBW 58; //Tippgeschwindigkeit (f黵 vorw鋜ts positiv)

 T DBW 28;

 SPB M016;

M017: NOP 0;

 L DBW 58; //Tippgeschwindigkeit

 L -1; //(f黵 r點kw鋜ts negativ)

 *I ;

 T DBW 28;

M016: NOP 0;

 U #Jog_for; //Tippgeschwindigkeit auf Null und Steuerbit reset

 UN #Jog_back;

 O ;

 UN #Jog_for;

 U #Jog_back;

 = DBX 26.0;

 R #Stop_MT;

NETWORK

TITLE =Referenzfahrt

 ON #Ref_Start;

 O #ref_ok;

 SPB M014;

 L DBW 60;

 T DBW 28;

 L W#16#C3F;

 T DBW 26;

 UN DBX 55.0;

 U DBX 55.3;

 U DBX 55.1;

 S #ref_ok;

M014: NOP 0;

 UN #Ref_Start; // Abbruch Referenzfahrt

 R DBX 26.3; // reset Start Referenzfahrt

 UN #Ref_Start;

 UN DBX 55.1;

 R #ref_ok;

 U #Fast_Stop_Disable;

 = DBX 27.2;

 U #Fast_Stop_Enable;

 = DBX 27.4;

 UN #Pause;

 = DBX 27.5;

 U #Position_Reset;

 = DBX 26.4;

 L DBW 26;

 T #conv_stw;

 U #Ref_Start;

 FP #pf_ref_start;

 = #pf_flag_values;

 U #pf_flag_values;

 R #ref_ok;

 R #Stop_MT;

NETWORK

TITLE =

//alter FC106/FB106 / Fahrsatz aufrufen und abarbeiten

 L 2;

 T #modus;

NETWORK

TITLE =Gesamtnetzwerk

// Fahrsatz starten

 U(;

 L #modus;

 L 2;

 <>I ; // Betriebsart = Positionierung?

) ;

 ON DBX 55.1;

 ON #Reference_ok;

 O DBX 26.0;

 O #Ref_Start;

 SPB M018; // Nein, dann nicht bearbeiten

 UN #Start_MT; // Bit zum Starten eines Fahrauftrages

 U #FlaMemN; // negativer Flankenmerker

 = #FlankeN;

 R #FlaMemN;

 U #Start_MT;

 S #FlaMemN;

 U #Start_MT; // Bit zum Starten eines Fahrsatzes

 UN #FlaMemP; // Flankenmerker

 = #FlankeP;

 S #FlaMemP;

 UN #Start_MT;

 R #FlaMemP;

 U #FlankeN;

 U DBX 83.0; // Vorwahl mit Toggeln

 SPB M019; // Bei Flanke Fahrauftrag beenden

 U #FlankeN;

 UN DBX 83.0;

 SPB M020;

 U #FlankeP;

 SPB M021;

 SPA M022; // zum Ausgang

M020: NOP 0; // Zeiger auf Steuerwort

 U #FlankeN;

 S #Stop_MT;

 SPA M022;

M019: NOP 0;

 U DBX 27.6; // Bit 6 im STW

 R DBX 27.6;

 SPA M022;

M021: NOP 0; //

 U #Stop_MT;

 R #Stop_MT;

 UN DBX 83.0;

 U DBX 27.6;

 R DBX 27.6;

 SPB M022;

 UN DBX 27.6; // Abfrage Bit 6 im STW

 S DBX 27.6; // Sollwertfreigabe / Start Fahrsatz

M022: NOP 0;

 L DBW 62;

 L 0;

 <>I ; // Fahrsatznummer ungleich 0

 SPB M023; // dann gespeicherten Fahrsatz starten

 NOP 0; // Programmteil f黵 Direktfahrauftr鋑e

 UN DBX 26.6; // Lade Steuerwort

 S DBX 26.6; // Bit 14 = 1 (PZD - Direktfahrsatz)

 UN DBX 27.3; // Bit 3 setzen und Betrieb freigeben

 S DBX 27.3;

 L DBD 66; // Sollgeschwindigkeit

 T DBD 28; // in Peripherie schreiben

 L DBD 70; // Sollposition

 T DBD 32; // in Peripherie schreiben

 L DBW 64; // Fahrsatzart

 T DBW 36; // in Peripherie schreiben

 SPA M018;

M023: NOP 0; // Programmteil f黵 gespeicherte Fahrauftr鋑e, STW Bit14=0

 U DBX 26.6; // Lade Steuerwort

 R DBX 26.6; // Bit 14 = 0 (PZD (HSW) - Fahrsatznummer)

 UN DBX 27.3; // Bit 3 setzen und Betrieb freigeben

 S DBX 27.3;

 L DBW 62;

 T DBW 28; // im Proze遜atenbereich ablegen

M018: NOP 0;

 U #Stop_MT;

 R DBX 27.3;

NETWORK

TITLE =

//alter FC110/FB110 Transfer von Parametern, Ist- und Sollwerten zwischen

//Steuerung und

//Antrieb

 L #NUDB_Adr;

 T #conv_nudb;

 AUF DB [#conv_nudb]; // Nutzdaten DB

 U #start_flag;

 SPB M024; // liegt an

 L DW#16#0;

 T DBW 0;

 U M 0.0;

 ON M 0.0; // immer 1

 R #fertig; // alles zuruecksetzen

 R #aktiv;

 R #fehler;

 L #status;

 L W#16#FF7F;

 UW ; // Status korrigieren (alt R M 239.7)

 T #status;

 SPA M025; // -> Ende

M024: U #fehler;

 O #fertig; // wenn fertig nicht nochmal lesen

 SPB M026;

 UN #read_write_flag; // Parameter lesen

 SPB M027;

 SPA M028; // Bei S7 direkter Sprung m鰃lich, 16.5.1997

M027: NOP 0; // alt: U M 239.7 // Laeuft Parameteraktion

 L #status;

 L W#16#80;

 UW ;

 L 128;

 ==I ;

 SPB M029; // Parameter lesen

 O DBX 5.0; // PKW-Auftrag laeuft

 SPB M025; // Zwischenstation zum Ende

 S #aktiv;

 L #status;

 L W#16#180; // S M 239.7 //Parameteraktion starten

 OW ; // S M 238.0 //Busy

 T #status;

 L W#16#1000; // PKE/AK = 1 (lesen)

 L #parameter_nr; // Parameternummer

 OW ; // verknuepfen

 T #conv_akku1;

 L #conv_akku1;

 T DBW 18; // PKE schreiben

// neu: 7.2.2000, Aufnahme des Index

 L #parameter_index;

 SLW 8;

 T #conv_akku1;

 L DBW 20; // IND lesen

 L W#16#FF;

 UW ;

 L #conv_akku1;

 OW ;

 T DBW 20; // IND schreiben, bis hier: 7.2.2000

// L W#16#1 // PKW-Auftrag starten : Parameter lesen

// T #conv_akku1

// L #conv_akku1

// T DBW 20 // abspeichern

M025: L #status; //MW 238

 T #status;

 SPA M026;

 SPA M030; // Zwischenstation zum Para-

 NOP 0; // meter schreiben

M029: NOP 0; // Ist Parameter schon da?

 NOP 0; // PKE im Empfangsfach, PPO-Typ2

 L DBW 38;

 L W#16#7FF;

 UW ; // PNU extrahieren

 L #parameter_nr; // =abgeschickter Parameternr.?

 <>I ;

 SPB M025; // nein -> Status speichern, R點ksprung zum Ende

 NOP 0; // neu: 7.2.2000, Abfrage des Index

 NOP 0; // IND lesen vorbereiten

 L DBW 40;

 SRW 8; // 10.2.2000

 L #parameter_index; // =abgeschicktem Index?

 <>I ;

 SPB M025; // nein -> Status speichern, R點ksprung zum Ende

 L DBW 38; // 躡erpr黤ung der Antwort, Wort/Doppelwort/generell OK

 L W#16#F000;

 UW ; // AK ausblenden

 L W#16#7000; // Parameterauftrag fehlerhaft ?

 ==I ;

 SPB M031; // Ja !

 SPA M032; // Nein !

M031: S #fehler; // sonst Fehlerbit setzen

 L W#16#FFFF;

 T #parameter_high; // High-Wort Parameter ung黮tig

 NOP 0; // PWE2 im Empfangsfach

 L DBW 44; // holen

 T #parameter_low; // Fehlernummer im Parameter-Low-Wort

 SPA M025; // und beenden

M032: NOP 0;

 L DBW 38; // 躡erpr黤ung der Antwort, Wort/Doppelwort/generell OK

 SRW 12; // oberstes Nibble nach unten holen

 T #parametertyp; // PTYP zuweisen

 L 2; // Doppelwortparameter ?

 ==I ;

 SPB M033; // Ja !

 L 0; // Bei Wortparametern High-Wort immer auf 0 setzen

 T #parameter_high;

 SPA M034; // Low-Wort aus DP-Fach holen

M033: NOP 0;

 L DBW 42; // PWE1 lesen

 T #parameter_high; // ausgeben

M034: NOP 0;

 L DBW 44; // PWE2 lesen

 T #parameter_low; // ausgeben

 SPA M035; // Sprungmarke ueberspringen

M030: SPA M028;

M035: SPB M036; // Fertig, VKE immer "1"

M036: S #fertig; // Fertigbit setzen

 R #aktiv; // Aktivbit zuruecknehmen

 R #fehler; // Fehlerbit loeschen

 L #status;

 L W#16#FE7F;

 UW ; // Status korrigieren (alt R M 239.7 / R M 238.0)

 T #status;

 SPA M026; // Statuswort abspeichern

M028: NOP 0;

NETWORK

TITLE =

 L #status; // U M 239.7 // laeuft Parameteraktion?

 L W#16#80;

 UW ;

 L 128;

 ==I ;

 SPB M037; // ja, dann Antwort pruefen

 S #aktiv;

 L #status;

 L W#16#180;

 OW ; // Status korrigieren (alt S M 239.7 / S M 238.0)

 T #status;

 L #parametertyp; // Typ des Parameters

 L 1; // 1 = Wort, 2 = Doppelwort

 ==I ;

 SPB M038; // nur ein Wort lesen, AK = 2

 L #parametertyp;

 L 2;

 ==I ;

 SPB M039; // Doppelwort lesen, AK = 3

 L #parametertyp; // 7.5.99 bei PTYP = 3 Nulltelegramm erzeugen

 L 3; // 7.5.99

 ==I ; // 7.5.99

 SPB M040; // 7.5.99

 S #fehler; // sonst mit VKE = 1 Fehler setzen

 R #aktiv; // Aktivflag zur點ksetzen

 L #status;

 L W#16#FE7F;

 UW ; // Status korrigieren (alt R M 239.7 / R M 238.0)

 T #status;

 SPA M026;

M038: NOP 0;

 L W#16#2000; // PKE im Sendefach, AK = 2

 SPA M041;

M040: NOP 0; // 7.5.1999 PKE und PANR auf 0

 L W#16#0; // 7.5.1999

 SPA M042; // 7.5.1999

M039: NOP 0;

 L W#16#3000; // PKE im Sendefach, AK = 3

M041: L #parameter_nr;

 OW ; // PKE/AK (schreiben)

 NOP 0; // mit Parameternummer

M042: T #conv_akku1;

 L #conv_akku1;

 T DBW 18; // PKE ins DP-Fach eintragen

 NOP 0; // neu: 7.2.2000, IND auch verarbeiten

 L #parametertyp; // Nulltelegramm beachten, 21.2.2000

 L 3;

 <>I ;

 SPB M043; // Normalfall

 L 0;

 T #conv_akku1; // 0 als Wert laden

 SPA M044;

M043: L #parameter_index;

 SLW 8;

 T #conv_akku1;

 L DBW 20; // IND lesen

 L W#16#FF;

 UW ;

 L #conv_akku1;

 OW ;

M044: T DBW 20; // IND schreiben, bis hier: 7.2.2000

 L #parametertyp; // Doppelwort schreiben ?

 L 2;

 ==I ;

 SPB M045;

 L 0; // sonst High-Wort auf 0 setzen, gilt auch f黵 PTYP 3

 SPB M046;

M045: L #parameter_high; // PWE1 im Sendefach

M046: T #conv_akku1;

 L #conv_akku1;

 T DBW 22; // ins DP-Sendefach eintragen

 L #parametertyp; // 7.5.1999 bei PTYP = 3 auch PALO mit 0 schreiben

 L 3;

 <>I ;

 SPB M047;

 L 0; // 7.5.1999 0 laden f黵 PTYP 3

 SPA M048;

M047: L #parameter_low; // PWE2 im Sendefach

M048: T #conv_akku1;

 L #conv_akku1;

 T DBW 24; // Low-Wert des Parameters

 L 2#1; // Start Servoantriebsdaten

 NOP 0; // = Kommunikationsteuerwort

 T #conv_akku1;

 L #conv_akku1;

 T DBW 0; // PKW-Auftrag starten

 L #status;

 T #status;

 SPA M026;

M037: NOP 0;

NETWORK

TITLE =

 L #parametertyp; // 9.5.1999 PTYP = 3 (Nulltelegramm)?

 L 3;

 <>I ;

 SPB M049; // 9.5.1999 PTYP 1,2, dann weiter

 L DBW 38; // 9.5.1999, PKE, PNU lesen

 L 0;

 <>I ;

 SPB M026;

 U DBX 5.4; // 9.5.1999, wenn Kommunikation gest鰎t, Fehlerbit setzen

 SPB M050;

 SPA M051; // 9.5.1999, Nulltelegramm erfolgreich geschrieben

M049: NOP 0;

 L DBW 38; // PKE lesen

 L W#16#7FF;

 UW ; // PNU ausblenden

 L #parameter_nr; // mit Parameternummer

 <>I ; // vergleichen

 SPB M026; // wenn ungleich, dann warten

 NOP 0; // neu: 7.2.2000, auch Index vergleichen

 NOP 0; // IND lesen vorbereiten

 L DBW 40;

 SRW 8; // 10.2.2000

 L #parameter_index; // =abgeschicktem Index?

 <>I ;

 SPB M026; // wenn ungleich, dann warten

 L #parametertyp; // Antwort typabh鋘gig auswerten

 L 1;

 ==I ;

 SPB M052; // Bei Wortschreiben mit Antwort-AK 1 vergleichen

 NOP 0; // sonst mit Antwort-AK 2

 L DBW 38; // PKE lesen

 L W#16#F000;

 UW ; // PKE lesen

 L W#16#2000;

 ==I ; // AK ausblenden

 SPB M051; // Parameterauftrag O.K.?

 SPA M050;

M052: NOP 0;

 L DBW 38; // PKE lesen

 L W#16#F000;

 UW ; // AK ausblenden

 L W#16#1000;

 ==I ; // Parameterauftrag O.K.?

 SPB M051;

M050: S #fehler; // Fehlerbit setzen (VKE = 1)

 L W#16#FFFF;

 T #parameter_high; // 16.6.97, High-Wort Parameter ung黮tig

 L DBW 44;

 T #parameter_low; // 16.6.97, Fehlernummer im Parameter-Low-Wort

 SPA M026; // und beenden

M051: S #fertig;

 R #aktiv; // Fehlerbit setzen

 L #status;

 L W#16#FE7F;

 UW ; // Status korrigieren

 T #status;

M026: L #status;

 T #status;

 L DBW 48; // aktuelle Drehzahl holen

 T #Actual_Speed;

 L DBD 50; // aktuelle Position holen

 T #Actual_Position;

 L DBW 54; // herstellerspezifischer Status

 T #Manufac_Stat;

 L DBW 46;

 T #ZSW; // ZSW

 U DBX 83.1;

 SPB M053;

 L DBW 42;

 T DBW 76;

 L DBW 44;

 T DBW 78;

M053: NOP 0;

NETWORK

TITLE =Receive consis. data from Profibus DP

//

//

//

// PKW - Bereich, 8 Bytes

 CALL "DPRD_DAT" (// DPRD_DAT

 LADDR := #PKWPeriStart,// projektierte Startadresse in Peripherie

 RET_VAL := #ErgPKW,// Ergebnis des Lesens

 RECORD := #PKWReceive);

// PZD - Bereich, 12 Bytes

 CALL "DPRD_DAT" (// DPRD_DAT

 LADDR := #PZDPeriStart,// projektierte Startadresse in Peripherie, PZD

 RET_VAL := #ErgPZD,// Ergebnis des Lesens

 RECORD := #PZDReceive);

NETWORK

TITLE =Write received data (PKW) to datablock (NUDB)

//

// Daten wurden gelesen, nun koennen sie in den NUDB eingetragen werden

//

 L #NrKSTW;

 + 38;

 T #Empf; // Start der empfangenen PKW-Daten im Nutzdatenbaustein

 SLW 3; // Zeiger auf dieses Datenwort bilden

 LAR1 ; // Adre遰egister 1 laden

 L #PKWReceive[1];

 SLW 8;

 L #PKWReceive[2];

 OW ; // PKW-Bereich, erstes Wort

 T DBW [AR1,P#0.0]; // im NUDB speichern

 TAR1 ;

 + 16;

 LAR1 ;

 L #PKWReceive[3];

 SLW 8;

 L #PKWReceive[4];

 OW ; // PKW-Bereich, zweites Wort

 T DBW [AR1,P#0.0]; // im NUDB speichern

 TAR1 ;

 + 16;

 LAR1 ;

 L #PKWReceive[5];

 SLW 8;

 L #PKWReceive[6];

 OW ; // PKW-Bereich, drittes Wort

 T DBW [AR1,P#0.0]; // im NUDB speichern

 TAR1 ;

 + 16;

 LAR1 ;

 L #PKWReceive[7];

 SLW 8;

 L #PKWReceive[8];

 OW ; // PKW-Bereich, viertes Wort

 T DBW [AR1,P#0.0]; // im NUDB speichern, PKW komplett

NETWORK

TITLE =Write received data (PZD) to datablock (NUDB)

//

// PKW-Daten eingetragen, nun PZD-Daten

//

 L #Empf;

 + 8;

 T #Empf; // Start der empfangenen PZD-Daten im Nutzdatenbaustein

 SLW 3; // Zeiger auf dieses Datenwort bilden

 LAR1 ; // Adre遰egister 1 laden

 L #PZDReceive[1];

 SLW 8;

 L #PZDReceive[2];

 OW ; // PZD-Bereich, erstes Wort

 T DBW [AR1,P#0.0]; // im NUDB speichern

 TAR1 ;

 + 16;

 LAR1 ;

 L #PZDReceive[3];

 SLW 8;

 L #PZDReceive[4];

 OW ; // PZD-Bereich, zweites Wort

 T DBW [AR1,P#0.0]; // im NUDB speichern

 TAR1 ;

 + 16;

 LAR1 ;

 L #PZDReceive[5];

 SLW 8;

 L #PZDReceive[6];

 OW ; // PZD-Bereich, drittes Wort

 T DBW [AR1,P#0.0]; // im NUDB speichern

 TAR1 ;

 + 16;

 LAR1 ;

 L #PZDReceive[7];

 SLW 8;

 L #PZDReceive[8];

 OW ; // PZD-Bereich, viertes Wort

 T DBW [AR1,P#0.0]; // im NUDB speichern

 TAR1 ;

 + 16;

 LAR1 ;

 L #PZDReceive[9];

 SLW 8;

 L #PZDReceive[10];

 OW ; // PZD-Bereich, fuenftes Wort

 T DBW [AR1,P#0.0]; // im NUDB speichern

 TAR1 ;

 + 16;

 LAR1 ;

 L #PZDReceive[11];

 SLW 8;

 L #PZDReceive[12];

 OW ; // PZD-Bereich, sechstes Wort

 T DBW [AR1,P#0.0]; // im NUDB speichern, PZD komplett

NETWORK

TITLE =Send consist. data (PKW) from datablock (NUDB) to Profibus DP

//

// PKW-Daten aus dem NUDB holen und in Felder eintragen

//

 L #NrKSTW;

 + 18;

 T #SendPKW; // Startadresse des PKW-Sendebereichs im Nutzdatenbaustein

 SLW 3; // Zeiger auf dieses Datenwort bilden

 LAR1 ; // Adre遰egister 1 laden

 L DBW [AR1,P#0.0]; // aus NUDB holen

 T #PKWSend[1]; // PKW erstes Wort geladen

 TAR1 ;

 + 16;

 LAR1 ;

 L DBW [AR1,P#0.0]; // aus NUDB holen

 T #PKWSend[2]; // PKW zweites Wort geladen

 TAR1 ;

 + 16;

 LAR1 ;

 L DBW [AR1,P#0.0]; // aus NUDB holen

 T #PKWSend[3]; // PKW drittes Wort geladen

 TAR1 ;

 + 16;

 LAR1 ;

 L DBW [AR1,P#0.0]; // aus NUDB holen

 T #PKWSend[4]; // PKW viertes Wort geladen

 CALL "DPWR_DAT" (// DPWR_DAT

 LADDR := #PKWPeriStart,

 RECORD := #PKWSend,

 RET_VAL := #ErgPKW);// PKW gesendet

NETWORK

TITLE =Send consist. data (PZD) from datablock (NUDB) to Profibus DP

//

// PZD-Daten aus dem NUDB holen und in Felder eintragen

//

 L #SendPKW;

 + 8;

 T #SendPKW; // Startadresse des PZD - Sendebereichs im Nutzdatenbaustein

 SLW 3; // Zeiger auf dieses Datenwort bilden

 LAR1 ; // Adre遰egister 1 laden

 L DBW [AR1,P#0.0]; // aus NUDB holen

 T #PZDSend[1]; // PZD erstes Wort geladen

 TAR1 ;

 + 16;

 LAR1 ;

 L DBW [AR1,P#0.0]; // aus NUDB holen

 T #PZDSend[2]; // PZD zweites Wort geladen

 TAR1 ;

 + 16;

 LAR1 ;

 L DBW [AR1,P#0.0]; // aus NUDB holen

 T #PZDSend[3]; // PZD drittes Wort geladen

 TAR1 ;

 + 16;

 LAR1 ;

 L DBW [AR1,P#0.0]; // aus NUDB holen

 T #PZDSend[4]; // PZD viertes Wort geladen

 TAR1 ;

 + 16;

 LAR1 ;

 L DBW [AR1,P#0.0]; // aus NUDB holen

 T #PZDSend[5]; // PZD fuenftes Wort geladen

 TAR1 ;

 + 16;

 LAR1 ;

 L DBW [AR1,P#0.0]; // aus NUDB holen

 T #PZDSend[6]; // PZD sechstes Wort geladen

 CALL "DPWR_DAT" (// DPWR_DAT

 LADDR := #PZDPeriStart,

 RECORD := #PZDSend,

 RET_VAL := #ErgPZD);// PZD gesendet

END_FUNCTION_BLOCK

