
SIMATIC

S7 Software Controller
IOT2000EDU

Operating Manual

03/2018
A5E42342500-AB

Guide through this Operating
Manual

 1

Safety information
 2

Description
 3

Preparing the product for first
use

 4

Uninstalling IOT2000EDU
 5

Operating the TIA Portal
 6

Configuring and operating
shields

 7

Operating IOT2000EDU
 8

Web server
 9

Function library
 10

OUC communication
 11

Technical specifications
 A

Additional information
 B

Abbreviations
 C

 Siemens AG
Division Digital Factory
Postfach 48 48
90026 NÜRNBERG
GERMANY

A5E42342500-AB
Ⓟ 04/2018 Subject to change

Copyright © Siemens AG 2017 - 2018.
All rights reserved

Legal information
Warning notice system

This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent
damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert
symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are
graded according to the degree of danger.

 DANGER
indicates that death or severe personal injury will result if proper precautions are not taken.

 WARNING
indicates that death or severe personal injury may result if proper precautions are not taken.

 CAUTION
indicates that minor personal injury can result if proper precautions are not taken.

 NOTICE
indicates that property damage can result if proper precautions are not taken.

If more than one degree of danger is present, the warning notice representing the highest degree of danger will
be used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to
property damage.

Qualified Personnel
The product/system described in this documentation may be operated only by personnel qualified for the specific
task in accordance with the relevant documentation, in particular its warning notices and safety instructions.
Qualified personnel are those who, based on their training and experience, are capable of identifying risks and
avoiding potential hazards when working with these products/systems.

Proper use of Siemens products
Note the following:

 WARNING
Siemens products may only be used for the applications described in the catalog and in the relevant technical
documentation. If products and components from other manufacturers are used, these must be recommended
or approved by Siemens. Proper transport, storage, installation, assembly, commissioning, operation and
maintenance are required to ensure that the products operate safely and without any problems. The permissible
ambient conditions must be complied with. The information in the relevant documentation must be observed.

Trademarks
All names identified by ® are registered trademarks of Siemens AG. The remaining trademarks in this publication
may be trademarks whose use by third parties for their own purposes could violate the rights of the owner.

Disclaimer of Liability
We have reviewed the contents of this publication to ensure consistency with the hardware and software
described. Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the
information in this publication is reviewed regularly and any necessary corrections are included in subsequent
editions.

IOT2000EDU
Operating Manual, 03/2018, A5E42342500-AB 3

Table of contents

1 Guide through this Operating Manual .. 6

2 Safety information ... 8

2.1 Security information .. 8

2.2 Application of the product ... 8

3 Description .. 9

3.1 Overview of functions IOT2000EDU ... 9

3.2 Required components ... 9

3.3 Operating conditions ... 10

4 Preparing the product for first use ... 11

4.1 Selecting the hardware ... 11

4.2 Installing Yocto Linux .. 12
4.2.1 Requirements and settings ... 12
4.2.2 Installation steps ... 12

4.3 Installing IOT2000EDU ... 13
4.3.1 Requirements and settings ... 13
4.3.2 Installing IOT2000EDU ... 14
4.3.3 Checking the installation ... 14
4.3.4 Operating IOT2000EDU.. 15
4.3.5 Installing IOT2000EDU support package in the TIA Portal .. 17

5 Uninstalling IOT2000EDU ... 18

6 Operating the TIA Portal.. 19

6.1 Introduction to the TIA Portal .. 19

6.2 Adding and configuring IOT2000EDU in the TIA Portal ... 19

6.3 IOT2000EDU programming with the TIA Portal ... 21

6.4 Downloading to device .. 23

6.5 Go online ... 24

6.6 Diagnostics events .. 24

7 Configuring and operating shields ... 25

7.1 SIMATIC IOT2000, Input/Output Module.. 25

7.2 Configuring the Arduino shield .. 30
7.2.1 Assigning Address_space ... 32
7.2.2 Assigning a GPIO ... 33
7.2.3 Assigning PWM ... 34
7.2.4 Assigning analog ... 35

7.3 Error messages ... 36

Table of contents

 IOT2000EDU
4 Operating Manual, 03/2018, A5E42342500-AB

8 Operating IOT2000EDU .. 38

8.1 RUN/STOP/MRES functions via TIA Portal ... 38

8.2 RUN/STOP/MRES functions via command line .. 39

8.3 RUN/STOP/MRES via Web server .. 41

9 Web server ... 42

9.1 Introduction .. 42

9.2 Requirements ... 42

9.3 Operating the Web server with Linux commands .. 42

9.4 Accessing Web server ... 43

9.5 Web server pages .. 43
9.5.1 Introduction .. 43
9.5.2 Home page ... 44
9.5.3 Identification ... 46
9.5.4 Diagnostic buffer .. 47

10 Function library ... 48

10.1 Overview of the CPU function library ... 48

10.2 Creating a user-defined SO file.. 49
10.2.1 Programming the "Execute" function ... 50
10.2.2 Programming additional functions.. 51
10.2.3 Data Access Helper classes .. 53
10.2.4 Data types .. 56

10.3 Creating function library programs with Eclipse ... 57
10.3.1 Alternative development environments .. 58
10.3.2 SDK installation in Windows .. 59
10.3.3 Compile the SO file with the example project .. 62
10.3.4 Cross compiling with the IOT2000 SDK installation .. 64
10.3.5 Loading an SO file to IOT20X0 .. 66

10.4 Preparing the TIA Portal project for the application ... 67
10.4.1 Reference of the IOT2000EDU function library Instructions .. 71
10.4.1.1 CREA_COM (SFB65001) .. 71
10.4.1.2 EXEC_COM (SFB65002) ... 72

10.5 Creating function library programs with Matlab Simulink ... 73
10.5.1 Requirements ... 74
10.5.2 Creating a Simulink model ... 74
10.5.3 Description of Simulink parameters ... 76
10.5.4 Integrating the Simulink model into Eclipse ... 77
10.5.5 Preparing TIA Portal for the Simulink model .. 80
10.5.6 Data type conversion ... 82

 Table of contents

IOT2000EDU
Operating Manual, 03/2018, A5E42342500-AB 5

11 OUC communication ... 83

11.1 Connection establishment .. 83

11.2 Configuring TCON and TDISCON in the TIA Portal ... 84

11.3 Data exchange .. 85

11.4 Configuring TSEND, TRCV and TUSEND, TURCV in the TIA Portal 86

A Technical specifications .. 88

A.1 Technical specifications .. 88

B Additional information .. 91

C Abbreviations .. 92

 IOT2000EDU
6 Operating Manual, 03/2018, A5E42342500-AB

 Guide through this Operating Manual 1

Purpose of the documentation
The information in this operating manual will enable you to install and use the
"SIMATIC S7 Software Controller IOT2000EDU" software.

You will also learn how to work with TIA Portal projects to program, start and stop the
IOT2000EDU.

Readership
This documentation is intended for students in educational institutions. It is used for training
purposes and provides information on handling TIA products.

Required basic knowledge
The following knowledge is required to understand the documentation:

● General knowledge of automation engineering

● An understanding of the SIMATIC industrial automation system

● Experience in programming with C/C++

● Experience in working with MATLAB/Simulink and Simulink Coder

● Experience in working with Eclipse

● Proficiency with Microsoft and Linux operating systems

● Experience in working with computer technology

Validity of the documentation
This document is valid for the following products:

● IOT2000EDU: 6ES7671-0LE00-0YB0

● IOT2020: 6ES7647-0AA00-0YA2

● IOT2040: 6ES7647-0AA00-1YA2

● SIMATIC IOT2000, Input/Output Module: 6ES7647-0KA01-0AA2

 Guide through this Operating Manual

IOT2000EDU
Operating Manual, 03/2018, A5E42342500-AB 7

Notes
Please also observe the notes marked as follows:

 Note

A note contains important information on the product described in the documentation, on the
handling of the product or on the section of the documentation to which particular attention
should be paid.

Definitions and naming conventions
The following generic terms are used in this documentation:

● Arduino Shield: ARDUINO UNO (Rev3)

● SIEMENS Shield: SIMATIC IOT2000, Input/Output Module

● IOT2000EDU: SIMATIC S7 Software Controller IOT2000EDU

● IOT20x0: SIMATIC IOT2020 and SIMATIC IOT2040

● STEP 7: We refer to the configuration and programming software as "STEP 7" in this
documentation synonymously for the version "STEP 7 V15 (TIA Portal)".

● SO: Shared Object

 IOT2000EDU
8 Operating Manual, 03/2018, A5E42342500-AB

 Safety information 2
2.1 Security information

Siemens provides products and solutions with industrial security functions that support the
secure operation of plants, systems, machines and networks.

In order to protect plants, systems, machines and networks against cyber threats, it is
necessary to implement – and continuously maintain – a holistic, state-of-the-art industrial
security concept. Siemens' products and solutions constitute one element of such a concept.

Customers are responsible for preventing unauthorized access to their plants, systems,
machines and networks. Such systems, machines and components should only be
connected to an enterprise network or the internet if and to the extent such a connection is
necessary and only when appropriate security measures (e.g. firewalls and/or network
segmentation) are in place.

For additional information on industrial security measures that may be implemented, please
visit (https://www.siemens.com/industrialsecurity).

Siemens' products and solutions undergo continuous development to make them more
secure. Siemens strongly recommends that product updates are applied as soon as they are
available and that the latest product versions are used. Use of product versions that are no
longer supported, and failure to apply the latest updates may increase customers' exposure
to cyber threats.

To stay informed about product updates, subscribe to the Siemens Industrial Security RSS
Feed under (https://www.siemens.com/industrialsecurity).

2.2 Application of the product

 Note

Do not use this product in productive operation or for controlling potentially hazardous
processes. This product is only intended for students and is therefore reserved for
educational purposes.

IOT2000EDU
Operating Manual, 03/2018, A5E42342500-AB 9

 Description 3
3.1 Overview of functions IOT2000EDU

IOT2000EDU implements a SIMATIC S7-compatible software controller on the IOT2020 or
IOT2040 and is designed for training purposes. It is specially designed for learning how to
program controllers with the SIMATIC TIA Portal.

In addition, you can use the TIA Portal program editor to program the IOT2000EDU. You can
do so with the help of organization blocks, function blocks and data blocks as well as
functions. You can use these blocks and the TIA Portal libraries to write your programs.

The TIA Portal or the command line program "CPU_Control" enables you to control the
IOT2000EDU. You can also configure your IOT20x0 device, program it and execute the
functions RUN, STOP and MRES.

 Note
Application of the product

Do not use this product in productive operation or for controlling potentially hazardous
processes. This product is only intended for students and is therefore reserved for
educational purposes.

3.2 Required components
Make sure that the product is complete. The scope of delivery of the IOT2000EDU includes
the following parts:

● IOT2000EDU IPK file for installing the Runtime on the SIMATIC IOT2020 or IOT2040

● IOT2000EDU HSP file for providing runtime in SIMATIC STEP7 V15

● IOT2000EDU manual as PDF file (German and English)

● IOT2000EDU license label for attaching to SIMATIC IOT2020 or IOT2040

Description
3.3 Operating conditions

 IOT2000EDU
10 Operating Manual, 03/2018, A5E42342500-AB

3.3 Operating conditions

Deployment requirements
The IOT2000EDU is solely intended for educational purposes. This means it must not be
used in production plants or safety critical areas.

Hardware requirements
● SIMATIC IOT2020 or IOT2040

● Power supply 24 V DC

● Recommended: Arduino Shield or SIEMENS Shield

 Note

Using the IOT2000EDU without Shield

If you do not configure a shield, the IOT2000EDU runs without access to the
I/O interfaces over the Arduino pins.
Plus you will see the following message in "var/log/messages": "Can not open
IO configuration file, IO Module not initialized."

● microSD card

● LAN cable

● PC with host OS

Software requirements
● SIMATIC IOT2000EDU

● TIA Portal V15 or higher

● Hardware Support Package "HSP_V15_0245_001_S7_IOT2000EDU_1.1.isp15"

● Yocto Linux OS

● OPKG Package Manager Version 0.3.3 and higher

● MRAA 1.6.1

● Libc6 and libstdc++6

● SSH or installed serial terminal

● 200 MB free memory on the root file system

● Root privileges

IOT2000EDU
Operating Manual, 03/2018, A5E42342500-AB 11

 Preparing the product for first use 4
4.1 Selecting the hardware

There are two SIMATIC IOT20x0 versions:

● SIMATIC IOT2020

● SIMATIC IOT2040

SIMATIC IOT2020
● Intel Quark® x1000

● 512 MB RAM

● 1 Ethernet port

● 1 USB Host Type A

● 1 USB Client microUSB

SIMATIC IOT2040
● Intel Quark® x1020

● 1 GB RAM

● 2 Ethernet ports

● 1 USB Host Type A

● 1 USB Client microUSB

● 2 RS232/485 interfaces

● Battery-buffered RTC

Preparing the product for first use
4.2 Installing Yocto Linux

 IOT2000EDU
12 Operating Manual, 03/2018, A5E42342500-AB

4.2 Installing Yocto Linux

4.2.1 Requirements and settings
The SIMATIC IOT2000EDU uses a Yocto Linux operating system which must be installed on
a microSD card. This means you need a microSD card with a memory capacity of 8 GB to
32 GB.

This documentation assumes that you have already commissioned the IOT. You can find
additional information on commissioning here
(https://support.industry.siemens.com/tf/ww/en/posts/setting-up-the-simatic-
iot2000/155642/?page=0&pageSize=10).

4.2.2 Installation steps

Download SD cards example image or create it yourself
To use the full scope of functions offered by the IOT2000EDU,you need an SD card with an
installed Yocto Linux operating system. You can find the operating system in the Siemens
Industry Online Support (SIOS Portal). You can download it here
(https://support.industry.siemens.com/cs/document/109741799/simatic-iot2000-sd-card-
example-image?dti=0&lc=en-WW).

But you can also create your own image. You can find the instructions on the Internet
(https://github.com/siemens/meta-iot2000).

If you observe these instructions and do not want to use the example image from the SIOS
Portal, you must install the following software prior to building your own image:

● OPKG Package Manager Version 0.3.3 and higher

● MRAA 1.6.1

● Libc6 and libstdc++6

Installing the OPKG Package Manager
You install the OPKG Package Manager with the help of the Yocto Build System by adding
the image feature "package-management" to the "EXTRA_IMAGE_FEATURES" tag and
setting PACKAGE_CLASSES ?= "package_ipk".
Detailed information on Yocto tags is available on the Internet here
(http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#ref-features-image) and
here (http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-
PACKAGE_CLASSES).

 Preparing the product for first use
 4.3 Installing IOT2000EDU

IOT2000EDU
Operating Manual, 03/2018, A5E42342500-AB 13

Installing MRAA 1.6.1
The IOT2000EDU requires the Intel MRAA Library (1.6.1) for Arduino based IO tasks.
Additional information is available here (https://github.com/intel-iot-devkit/mraa#installing-on-
intel-32bit-yocto-based-opkg-image).

Installing Libc6 and libstdc++6
You must also set the following tags before you can start the image building process:

IMAGE_INSTALL_append = " libstdc++"

To use additional packages, such as ssh-server-openssh, add the entry meta-oe meta layer
to the "bblayer.conf" file.

The IOT2000EDU also needs libjson-c 0.12 which is included in the ipk package.

4.3 Installing IOT2000EDU

4.3.1 Requirements and settings
To install the IOT2000EDU without problems, you should meet the following requirements
and prepare your Linux operating system according to the following recommendations.

● IOT2020 or IOT2040

● Installed Linux OS on a microSD card

– Linux with TCP/IPv4 support

– libc6 and libstdc++6

– mraa 1.6.1

– OPKG Package Manager Version 0.3.3 and higher

– IKP Package ecosystem

– 200 MB free memory on the root file system

– Root privileges

● A host OS with:

– SSH or installed serial terminal

– Keyboard

– Monitor

– Serial FTDI cable or LAN cable

Preparing the product for first use
4.3 Installing IOT2000EDU

 IOT2000EDU
14 Operating Manual, 03/2018, A5E42342500-AB

4.3.2 Installing IOT2000EDU

Requirement
● Root rights

Procedure
1. Check the opkg installation: opkg -v

2. Install IOT2000EDU_<version-info>_i586.ipk using the OPKG Package Manager with the
command: opkg install IOT2000EDU_<version-info>_i586.ipk

Example for version 1.1.0: opkg install IOT2000EDU_1.1.0_i586.ipk

Result
You can find the executable files "IOT2000EDU" and "CPU_Control" under "/usr/local/bin".

The default IO configuration file "io.conf" is located in the directories "/usr/local/etc".

The "Libjson-c" files are located in the directories "/usr/lib" and "/usr/include/json-c".

4.3.3 Checking the installation
1. Check the installed packages with the following OPKG List command:

– opkg info IOT2000EDU

This command represents the package name that is called by the OPKG database.

2. The executable files and their version can be checked with the parameters -v
or --version:

– /usr/local/bin/IOT2000EDU –v

– /usr/local/bin/CPU_Control -v

The OPKG Manager shows an error message and cancels the installation when
Dependencies such as "mraa" are missing.

When you restart the installation of the package, the OPKG shows an error message and
cancels the installation.

The Web server is included in the installation of the IOT2000EDU installation package
"IOT2000EDU_1.1.0_i586.ipk". Find out more in the "Web server (Page 42)" section.

 Preparing the product for first use
 4.3 Installing IOT2000EDU

IOT2000EDU
Operating Manual, 03/2018, A5E42342500-AB 15

4.3.4 Operating IOT2000EDU

Starting the IOT2000EDU
You start the "IOT2000EDU" application in the installation path with a user role.

You can start the IOT2000EDU application with the suffix "&" so that it is being executed in
the background. This process frees up the shell for the next user inputs.

Example:

/usr/local/bin/IOT2000EDU&

You can execute the application from the current path with the prefix ./ that identifies the
current directory.

To execute the application from any path, you must enter the complete storage path instead
of the current path prefix.

You can also use the init.d autostart service, which is pre-installed by the IOT2000 Yocto
image. If you set the init.d service for the IOT2000, the IOT2000EDU starts automatically
when the Linux OS is booted.

Logs
Logs are created in the file "/var/log/messages".

I/O configuration
During installation of the IOT2000EDU_<version>_i586.ipk package, the preconfigured
example file io.config.sample is installed in the directory "/usr/local/etc". This example file
contains the pin configuration settings "SIMATIC IOT IOT2000, Input/Output Module".

When the IOT2000EDU is started for the first time and the folder "IOT2000EDU" does not
exist in the "$HOME" directory, the folder is created and the example file
"$HOME/IOT2000EDU/io.conf.sample" is created as well.

To use the pins of the IOT20x0, either adapt the file "io.conf.sample" and change the name
to "io.conf" or create a io.conf file manually.

If the IOT2000EDU cannot locate the file "$HOME/IOT2000EDU/io.conf" during startup, the
IOT2000EDU continues to start and the Arduino pins are not initialized.

Alternatively, you can also forward the manually created io.conf file with the parameters -c
or --conf to the IOT2000EDU.

Example:

● /usr/local/bin/IOT2000EDU -c <file name with path of the manually created io.conf

file>

● /usr/local/bin/IOT2000EDU --conf <file name with path of the manually created

io.conf file>

When you set the status of the CPU to "STOP" or "SHUTDOWN", for example with
"CPU_Control" or the TIA Portal, the PWMs stop and the GPIO outputs are set to "0". At the
start of the "run" state, all pins are reset to the default settings that you entered in the io.conf
file.

Preparing the product for first use
4.3 Installing IOT2000EDU

 IOT2000EDU
16 Operating Manual, 03/2018, A5E42342500-AB

waf files
The IOT2000EDU checks the directory "$HOME/IOT2000EDU" for instance-specific files
when started. The IOT2000EDU saves the control program downloaded from the TIA-Portal
and the hardware configuration in the waf file. The waf file is downloaded and executed
during booting when the PLC is in "RUN". If the IOT2000EDU cannot locate these files, it
generates project-specific waf files in the directory "$HOME/IOT2000EDU".

In doing so, the IOT2000EDU uses the default directory "$HOME/IOT2000EDU". However,
you can use the parameters -p <project directory> or --projectdir <project directory>
to adjust the path of the project directory.

Example:

● /usr/local/bin/IOT2000EDU -p <path to other project directory>

● /usr/local/bin/IOT2000EDU --projectdir <path to other project directory>

Displaying version information
To display the version information, use the parameters -v or --version.

Example:

● /usr/local/bin/IOT2000EDU -v

● /usr/local/bin/IOT2000EDU --version

Changing the instance name of the Runtime
To change the instance name of the IOT2000EDU, use the parameters -i or --instancename.

Example:

● /usr/local/bin/IOT2000EDU -i <new instance name>

● /usr/local/bin/IOT2000EDU --instancename <new instance name>

Displaying help information
To display the help information of the IOT2000EDU, use the parameters -h or --help.

Example:

● /usr/local/bin/IOT2000EDU -h

● /usr/local/bin/IOT2000EDU --help

 Preparing the product for first use
 4.3 Installing IOT2000EDU

IOT2000EDU
Operating Manual, 03/2018, A5E42342500-AB 17

4.3.5 Installing IOT2000EDU support package in the TIA Portal
This section provides information on how to install the Hardware Support Package (HSP) of
the IOT2000EDU in the TIA Portal. This is necessary so that you can work with the
IOT2000EDU in the TIA Portal.

Requirements
● You have installed TIA Portal V15 (or higher).

● You have HSP "HSP_V15_0245_001_S7_IOT2000EDU_1.1.isp15".

Procedure
1. Start the TIA Portal as administrator.

2. In the TIA Portal, click "Support Packages" in the "Options" menu bar.
The "Detailed information" dialog opens. A table lists all support packages from the
directory that you selected as the storage location for support packages in the settings.

3. Click the "Add from file system" button.

4. Select the file "HSP_V15_0245_001_S7_IOT2000EDU_1.1.isp15".

5. Select the support package and click on "Install".

6. Close and then restart the TIA Portal.

Result
After successful installation, you can now access the IOT2000EDU in the TIA Portal device
catalog along with all other functions, such as Configuration, Download or Online.

 IOT2000EDU
18 Operating Manual, 03/2018, A5E42342500-AB

 Uninstalling IOT2000EDU 5

Proceed as follows to uninstall the IOT2000EDU:

1. Start the uninstall with the following OPKG command: opkg remove IOT2000EDU

This command deletes the following files:

● "io.conf.sample" unter "/usr/local/etc/"

● "IOT2000EDU" and "CPU_Control" under "/usr/local/bin/"

● libjson-c files under "/usr/lib/" and "/usr/include/json-c/"

The user-specific files in the directory "IOT2000EDU" are not deleted during uninstall.

When you try to uninstall the package multiple times, a message will inform you that a
package is not available to uninstall.

IOT2000EDU
Operating Manual, 03/2018, A5E42342500-AB 19

 Operating the TIA Portal 6
6.1 Introduction to the TIA Portal

The Totally Integrated Automation Portal (TIA portal) integrates various SIMATIC products in
a software application with which you can increase your productivity and efficiency. The TIA
products work together within the TIA portal and support you in all areas required for the
creation of an automation solution.

The most important configuration steps are:

● Creating the project

● Configuring the hardware

● Networking the devices

● Programming the PLC

● Configuring the visualization

● Loading the configuration data

● Using the online and diagnostic functions

In the chapter below you will learn how to create, configure and program the IOT2000EDU in
the TIA Portal.

6.2 Adding and configuring IOT2000EDU in the TIA Portal
In this chapter you will learn how to add the IOT2000EDU in the TIA Portal.

There are multiple ways in which you can add a device in the TIA Portal. This section
describes the procedure using the "Add new device" dialog.

Requirement
● You have started the TIA Portal.

● You are in the portal view.

● You have created a new project.

Operating the TIA Portal
6.2 Adding and configuring IOT2000EDU in the TIA Portal

 IOT2000EDU
20 Operating Manual, 03/2018, A5E42342500-AB

Add new device
1. Click on the option "Configure a device".

2. Click on the option "Add new device".
The "Add new device" dialog opens.

3. Click "PC systems".

4. Go to the entry under "PC systems > SIMATIC IOT2000EDU" > "6ES7 671-0LE00-0YB0"
and select it.
A preview of the IOT as well as its article number, version and description is shown on
the right side of the dialog.

5. Click "Add".

Result
The project view opens and the IOT2000EDU has been added to your project.

Configuring the IOT2000EDU
Once you have created the IOT2000EDU as a new device, you can view and configure the
IOT2000EDU and its interfaces and change the name.

● In the working area, click the device "IOTPLC_1".
The "Properties" tab of the IOT2000EDU opens in the inspector window.

● In the working area, click on the interface with the green border.

The "Properties" tab of the IOT interface opens in the inspector window.

You can enter the IP address and the subnet mask address in the "Properties" tab.

 Note

The IP address set in the interface properties must be the same as the address of the
IOT20x0.

 Operating the TIA Portal
 6.3 IOT2000EDU programming with the TIA Portal

IOT2000EDU
Operating Manual, 03/2018, A5E42342500-AB 21

6.3 IOT2000EDU programming with the TIA Portal
In this section you will learn about the means that are available to you when programming
the IOT2000EDU in the TIA Portal.
You will learn how you can insert the organization blocks, function and data blocks and the
functions.

Organization blocks
The following organization blocks are supported by the IOT2000EDU and can be configured
in the TIA Portal:

OB Description
OB 1 Free cycle
OB 10 Time-of-day interrupts
OB 20 Time-delay interrupts
OB 30 - OB 38 Cyclic interrupts 1)
OB 100, OB 102 Startup
OB 80, OB 84, OB 85 Asynchronous error interrupts
OB 121 Synchronous error interrupts
 1) When a cyclic interrupt OB exceeds the cycle time, a timeout error OB (OB 80) is started.

Operating the TIA Portal
6.3 IOT2000EDU programming with the TIA Portal

 IOT2000EDU
22 Operating Manual, 03/2018, A5E42342500-AB

"Add new block" dialog
1. In the project tree, double-click the entry "Add new block" which is located in the

"Program blocks" folder.
The "Add new block" dialog opens.

Figure 6-1 Blocks

2. Select an organization block, function block, data block or a function in the "Add new
block" dialog.

3. You can also select a programming language in the "Language" box.

4. Click "OK" to confirm your selection.

 Operating the TIA Portal
 6.4 Downloading to device

IOT2000EDU
Operating Manual, 03/2018, A5E42342500-AB 23

"Instructions" pane
The "Instructions" pane lists all available libraries which will support you during
programming. Libraries that are not available are grayed out and cannot be used.

1. Double-click a library element.
The "Call options" dialog opens.

2. You can change the name and number of the element in this dialog.

3. Click "OK" to confirm.

6.4 Downloading to device
In this chapter you will learn how to download your changes to the device.

Requirements
● You have connected the IOT20x0 to your PC via Ethernet.

● You have started the IOT2000EDU.

● You have created the device in the TIA Portal.

● You have entered an IP address in the properties of the interface.

Procedure

1. Click "Download to device" in the toolbar.
The "Extended download to device" dialog box opens automatically during the initial
download of a project to a device.

2. In this dialog assign the protocol and interface or the destination path for the project in
accordance with the device Runtime used.

3. Select the PG/PC interface at which your PC is connected to the IOT2000EDU.

4. Select a search in the drop-down menu.

5. Click "Start Search".

6. As soon as the search has found the connected IOT2000EDU, click "Download".
The project is compiled. Warnings and errors during compilation are displayed in the
"Load preview" dialog.

7. Click on download after successful compilation.

Result
The project was successfully downloaded to the device.

Operating the TIA Portal
6.5 Go online

 IOT2000EDU
24 Operating Manual, 03/2018, A5E42342500-AB

6.5 Go online
This section explains how you connect the device online and further illustrates the functions
RUN, STOP and MRES of the SIMATIC IOT2000EDU via TIA Portal.

Go online
After the "Download to device" function has been successfully executed, click "Go online" in
the toolbar to establish a connection to the device.

"RUN", "STOP" and "MRES"
As soon as you are connected to the device online, you will have access to the functions
RUN, STOP and MRES. You can use these functions to start and stop the CPU and perform
a memory reset. For detailed information on how you use these functions, see the section
"RUN/STOP/MRES functions via TIA Portal (Page 38)".

 Note

Only execute the RUN function when the IOT2000EDU is in "STOP" mode. And you only
execute the STOP function when the IOT2000EDU is in "RUN" mode. Otherwise you will
receive an error message.

6.6 Diagnostics events
Once you have connected with the device online, you can use the "Online & Diagnostics"
function.

Procedure
1. Double-click "Online & Diagnostics" in the project tree.

The "Online & Diagnostics" view opens in the working area.

2. Open the "Diagnostic buffer" menu under "Diagnostics" > "Diagnostic buffer".

The events are displayed in the diagnostic buffer in the sequence in which they occur.

IOT2000EDU
Operating Manual, 03/2018, A5E42342500-AB 25

 Configuring and operating shields 7
7.1 SIMATIC IOT2000, Input/Output Module

In this section you will learn which settings you have to make for the pin configurations of a
Siemens Arduino shield using the example below.

The Siemens shield has 5 digital inputs, 2 digital outputs and 2 analog inputs. The analog
inputs can be selected as current and voltage.
For detailed information on the Siemens shield "Input/Output Module" go here
(https://support.industry.siemens.com/cs/document/109745681/iot2000-io-input-output-
module?dti=0&lc=en-US).

Assigning an address
Start by assigning the I/O addresses. The I/O addresses must not overlap in the same
process image (input/output) memory area. The input and output addresses must be
arranged without overlap.

Example:

Digital_in_start can be a value between 0 and 509. If you select the value "100", the values
"101" and "102" are assigned. Another input address area, for example, the value for
"analog_in_start", must be between 0 and 500 and not 100, 101 and 102.

Program code
"address_space":[{
 "digital_in_start":100,
 "digital_out_start":100,
 "pwm_out_start":103,
 "analog_in_start":103,
}],

Configuring and operating shields
7.1 SIMATIC IOT2000, Input/Output Module

 IOT2000EDU
26 Operating Manual, 03/2018, A5E42342500-AB

Assigning a GPIO
The five digital inputs of the Siemens shield have the pin numbers 4, 9, 10, 11 and 12. When
you enter the value "100" for "digital_in_start", this means:

I-address 102 101 100

Bit Reserved 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
Arduino

pin
Reserved 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Arduino pin Process image (I-area) I/O description on the shield

4 I100.4 DI4
9 I101.1 DI3

10 I101.2 DI2
11 I101.3 DI1
12 I101.4 DI0

The two digital outputs of the Siemens shield have the pin numbers 7 and 8. When you enter
the value "100" for "digital_out_start", this means:

Q-address 102 101 100

Bit Reserved 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
Arduino

pin
Reserved 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Arduino pin Process image (I-area) I/O description on the shield

7 Q100.7 DQ1
8 Q101.0 DQ0

Assigning PWM outputs
The Siemens Arduino shield does not have any PWM outputs.

 Configuring and operating shields
 7.1 SIMATIC IOT2000, Input/Output Module

IOT2000EDU
Operating Manual, 03/2018, A5E42342500-AB 27

Assigning analog
You can enter the two analog inputs either as "0 to 10 V" or "0 to 20 mA". The pin resolution
of these inputs is 9 bits for this shield. When you enter the value "103" for "analog_in_start",
this means:

I-address 113 111 109 107 105 103

Arduino pin A5 A4 A3 A2 A1 A0

Arduino pin Process image (I-area) I/O description on the shield

A0 IW103 U0
A1 IW105 I0
A2 IW107 U1
A3 IW109 I1

Content of the example file io.conf.sample of the Siemens IOT2000 Arduino shield

Program code Comment

{

 "__comments": [{

 "name": "SIMATIC IOT2000, Input/Output Module",

 "compatibility": "Arduino Uno R3",

 "supports": "IOT2020 & IOT2040 Devices",

 "gpio": "5 Digital Input Pin: DI4,DI3,DI2,DI1,DI0,

"2 Digital Output Pin: DQ1, DQ0",

 "analog": "2 Analog Input Pin: U0,I0,U1,I1 (0 .. 10 V or 0 … 20 mA can be
selected), Resolution:9-bit",

 "address": "Look at the surface of IOT2000 I/O module and see port names.

 I/O Description Arduino Pin PLC Adress

 DI4 4 I100.4

 DI3 9 I101.1

 DI2 10 I101.2

 DI1 11 I101.3

 DI0 12 I101.4

 DQ1 7 Q100.7

 DQ0 8 Q101.0

 U0 A0 IW 103

 I0 A1 IW 105

 U1 A2 IW 107

 I1 A3 IW 109",

 }],

 "address_space": [{

 "digital_in_start":100,

Configuring and operating shields
7.1 SIMATIC IOT2000, Input/Output Module

 IOT2000EDU
28 Operating Manual, 03/2018, A5E42342500-AB

Program code Comment

 "digital_out_start":100,

 "pwm_out_start":103,

 "analog_in_start":103,

 }],

 "gpio": [{

 "pin": 4,

 "is_output": 0,

 "initial_value": 0

 }, {

 "pin": 9,

 "is_output": 0,

 "initial_value": 0

 }, {

 "pin": 10,

 "is_output": 0,

 "initial_value": 0

 }, {

 "pin": 11,

 "is_output": 0,

 "initial_value": 0

 }, {

 "pin": 12,

 "is_output": 0,

 "initial_value": 0

 }, {

 "pin": 7,

 "is_output": 1,

 "initial_value": 0

 }, {

 "pin": 8,

 "is_output": 1,

 "initial_value": 0

 }],

 "analog": [{

 "pin": 0,

 "pin_resolution":9

 }, {

 "pin": 1,

 "pin_resolution":9

 }, {

 "pin": 2,

 "pin_resolution":9

 }, {

 "pin": 3,

 Configuring and operating shields
 7.1 SIMATIC IOT2000, Input/Output Module

IOT2000EDU
Operating Manual, 03/2018, A5E42342500-AB 29

Program code Comment

 "pin_resolution":9

 }]

}

Example:

Configuring and operating shields
7.2 Configuring the Arduino shield

 IOT2000EDU
30 Operating Manual, 03/2018, A5E42342500-AB

7.2 Configuring the Arduino shield
It is possible to use an Arduino shield instead of the Siemens shield.

The section below explains the necessary steps, how you must configure an ARDUINO UNO
(Rev3), and it explains how you must adapt the configuration file io.conf.

Interfaces of the IOT20x0 Arduino shield
The figure below shows the motherboard of the SIMATIC IOT20x0, the interfaces X10, X11,
X12 and X13 as well as the arrangement of the pins. The orange rectangles indicate the first
pin on the respective interface.

Figure 7-1 IOT20x0 motherboard with interfaces

 Configuring and operating shields
 7.2 Configuring the Arduino shield

IOT2000EDU
Operating Manual, 03/2018, A5E42342500-AB 31

The table below shows the pin numbers of the interfaces in the io.conf file depending on the
operating mode.

Interface Pin io.conf pin numbers
Digital Analog PWM

X11 1 0
2 1

3 2
4 3 3
5 4
6 5 5
7 6 6
8 7

X10 1 8
2 9 9
3 10 10
4 11 11
5 12
6 13
7
8
9 18 4
10 19 5

X12 1 14 0
2 15 1
3 16 2
4 17 3
5 18 4
6 19 5

The interface X13 is not configured in the software.

Configuration file io.conf
Fill in the following sections in the configuration file:

1. "address_space": Specification of the start address of PWM, GPIO and AIO.

2. "gpio": Assignment of an Arduino pins as digital input/output.

3. "pwm": Assignment of an Arduino pins as PWM with its period.

4. "analog": Assignment of an Arduino pins as AIO with its resolution.

The following sections explain how you must fill the individual section in the configuration file.

Configuring and operating shields
7.2 Configuring the Arduino shield

 IOT2000EDU
32 Operating Manual, 03/2018, A5E42342500-AB

7.2.1 Assigning Address_space
Define the PIN addresses in the following format:

Program code
"address_space":[{
 "digital_in_start" :gpioIN_address,
 "digital_out_start" :gpiOut_address,
 "pwm_out_start" :pwm_address,
 "analog_in_start" :aio_address,
}],

These addresses correspond to the default process image (OB1 PI) addresses in the PLC
program. Only the address range 0 to 511 can be used in form of a byte.

This address section contains:

● "digital_in_start" (uses 3 bytes) and "analog_in_start" (uses 12 bytes) addresses in the
process image (inputs) memory area

● "digital_out_start" (uses 3 bytes) and "pwm_out_start" (uses 6 bytes) addresses in the
process image (outputs) memory area

The input and output addresses must be arranged in their address range without overlap.

The minimum and maximum values can be used as start addresses in the IO configuration:

Table 7- 1 Process image addresses

Process image adress_space min max
Input digital_in_start 0 509

Output digital_out_start 0 509
Output pwm_out_start 0 506
Input analog_in_start 0 500

Use the following memory areas in the TIA Portal together with the addresses:

● I, IB, IW, ID: Process image memory areas for reading the input

● Q, QB, QW, QD: Process image memory areas for writing outputs

● PIB, PIW, PID: Direct access for reading the I/O input

● PQB, PQW, PQD: Direct access for writing the I/O output

 Configuring and operating shields
 7.2 Configuring the Arduino shield

IOT2000EDU
Operating Manual, 03/2018, A5E42342500-AB 33

7.2.2 Assigning a GPIO
Only 1 bit is assigned for each input/output pin.

The IOT20x0 has 20 pins (0 to 19). A total of 3 bytes each are reserved for the Process Input
Image (I, PI) and the Process Output Image (Q, PQ). Pin addresses are assigned to the
"digital_in_start" or the "digital_out_start" sequentially by the "address_space" area in the
configuration file io.conf.

Select "digital_in_start" as gpioIN_address, which means:

I-address gpioIN_address + 2 gpioIN_address +1 gpioIN_address
Bit Reserved 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Arduino
pin

 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Select "digital_out_start" as gpiOut_address, which means:

Q-address gpioOut_address + 2 gpioOut_address +1 gpioOut_address

Bit Reserved 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
Arduino

pin
 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

The following section shows an example of how you enter two pins as GPIO in the io.conf
file:

Program code Comment

"gpio": [{

 "pin": 4,

 "is_output": 1,

 "initial_value": 0

// Arduino pin (0-19)

// Output

// Logic ‘0’ or ‘1’

}, {

 "pin": 9,

 "is_output": 0,

 "initial_value": 0

// Arduino pin

// Input

// Logic ‘0’ or ‘1’

}],

You can find additional information on the assignment of the GPIOs here
(https://support.industry.siemens.com/tf/WW/en/posts/how-is-the-assignment-of-the-
gpios/155609?page=0&pageSize=10).

Configuring and operating shields
7.2 Configuring the Arduino shield

 IOT2000EDU
34 Operating Manual, 03/2018, A5E42342500-AB

7.2.3 Assigning PWM
1 BYTE is assigned to each PWM output.

The IOT20x0 has 6 PWM pins: 3, 5, 6, 9, 10 and 11. A total of 6 bytes are reserved for
Process Output Image memory area (Q, PQ) to control the PWMs. The address bytes are
assigned sequentially to the "pwm_address".

Select "pwm_out_start" as pwm_address, which means:

Q-address pwm_addres
s +5

pwm_addres
s +4

pwm_addres
s +3

pwm_addres
s +2

pwm_addres
s +1

pwm_addres
s

Adruino pin 11 10 9 6 5 3

The PWM contains two parameters that must be controlled, "Period" and "Duty-Cycle".

"Period" is the time interval that represents the difference in time between two subsequent
waves or signals. You enter the "Period" in the io.conf file. Its value is between 667 μs and
41665 μs. These are the period limits in microseconds (μs) supported by the platform. When
you enter a value outside these limits, the value is changed to the next maximum or
minimum value.

"Duty-cycle" is a parameter that defines the time for which the signal remains "on". This
value is given as a percentage. The value can be entered and changed in STEP7
Professional.

If you want to generate a rectangle signal, the value must be changed to 50%, which means
you must change the value to 127. In this case the resolution of the duty cycle is 8 bits (max:
255).

Duty cycle = Ton / (Ton + Toff) = x / 255

X is the value you enter in STEP7 Professional.

L 127
T QB pwm_address // Pin3 is activated to generate a signal at 50%

 Configuring and operating shields
 7.2 Configuring the Arduino shield

IOT2000EDU
Operating Manual, 03/2018, A5E42342500-AB 35

The following section shows an example of how you enter two pins as PWM in the io.conf
file:

Program code Comment

"pwm": [{

 "pin": 3, // Arduino pin

 "period_us": 10000 // Period (microsecond)

}, {

 "pin": 5,

 "period_us": 10000

}],

 Note

Note that the values for "period_us" must be the same for all pins.

7.2.4 Assigning analog
2 BYTES are assigned to each analog input due to the 12-bit resolution.

The IOT20x0 has 6 AIO pins: A0, A1, A2, A3, A4, A5. A total of 12 bytes are reserved for
Process Input Image Memory Area (I, PI) to control the AIOs.

Select "analog_in_start" as aio_adress, which means:

I-address aio_address
+10

aio_address
+8

aio_address
+6

aio_address
+4

aio_address
+2

aio_address

Adruino pin A5 A4 A3 A2 A1 A0

In addition to the PIN number, there is another parameter that you enter in the io.conf file:
the resolution.

Enter a value between 1 and 12 bits for the resolution. When you enter a value outside this
range, the value of the resolution is by default changed to 10 bits.

The following section shows an example of how you enter two pins as AIO in the io.conf file:

Program code Comment

"analog": [{

 "pin": 0, // Arduino pin (A0)

 "pin_resolution":12 // Resolution

}, {

 "pin": 1, // A1

 "pin_resolution":10

}],

Configuring and operating shields
7.3 Error messages

 IOT2000EDU
36 Operating Manual, 03/2018, A5E42342500-AB

7.3 Error messages
The io.conf file is parsed in the IOT2000EDU during initialization of the IOT2000EDU. If one
of the parameters was not configured correctly and/or contains a spelling error, the
IOT2000EDU cannot start and aborts with an error message.

The following items are checked in the software. If the io.conf file is invalid, the
corresponding message is displayed:

1. Address areas must be compatible with the table "Process image addresses (Page 32)".
Message:
"Digital Input Start Address should be greater than 0 and less than 509"
"Digital Output Start Address should be greater than 0 and less than 509"
"PWM Start Address should be greater than 0 and less than 506"
"Analog Input Start Address should be greater than 0 and less than 500"

2. Addresses must not overlap. For example: If "digital_in_start=100", analog_in_start may
not be "101"; it must be at least "103".
Message:
"Invalid address space configuration."
"Please be sure that Start Address values don’t overlap"
"GPIO allocates 3 Bytes, PWM allocates 6 Bytes and Analog Input allocates 12 Bytes"

3. GPIO pin number must be between 0 and 19.
Message:
"GPIO Pin number should be 0 – 19"

4. GPIO Is_output must be "0" or "1".
Message:
"is_output should be 1 or 0"

5. GPIO initial_value must be "0" or "1".
Message:
"initial_value should be 1 or 0"

6. PWM pin numbers must be 3, 5, 6, 9, 10, 11.
Message:
"Only 3,5,6,9,10,11 pins can be used as PWM"

7. PWM period must be between 667 and 41665 μs. Otherwise the value is changed to the
next minimum or maximum value. You will see some informational messages.
Message:
"PWM Period %d is more than maximum supported value. It will be set as %d"
"PWM Period %d is less than minimum supported value. It will be set as %d"

8. AIO pins must be between 0, 1, 2, 3, 4 and 5.
Message:
"Analog Pin numbers should be between 0-5"

9. AIO resolution must be between 1 and 12. Otherwise the AIO resolution is changed to the
value "10" by default.
Message:
"Analog Resolution should be between 1-12; it will be set as 10"

 Configuring and operating shields
 7.3 Error messages

IOT2000EDU
Operating Manual, 03/2018, A5E42342500-AB 37

10.Some pins are multifunctional. You should therefore be careful when you configure the
pins. For example: Pin 3 can be set as PWM as well as GPIO.
Message:
"PWM Pin Number: %d has already been configured. Please check multifunctional
GPIO/PWM Pins. Invalid PWM Pin Configuration"

All error messages are saved in the file "/var/log/messages". You can display the messages
in different ways:

cat /var/log/messages

tail–f /var/log/messages (indicates the end of the file.)

See also
Assigning Address_space (Page 32)

 IOT2000EDU
38 Operating Manual, 03/2018, A5E42342500-AB

 Operating IOT2000EDU 8
8.1 RUN/STOP/MRES functions via TIA Portal

This section further illustrates the functions RUN, STOP and MRES of the SIMATIC
IOT2000EDU via TIA Portal.

As soon as you are connected to the device online, you will have access to the following
functions:

● RUN, STOP and MRES: Over the CPU operating panel in the "Online & Diagnostics"
working area.

● RUN and STOP: Using the buttons "Start CPU" and "Stop CPU" in the toolbar.

"RUN" and "STOP"
1. Click the "Start CPU" button in the toolbar when you want to set the IOT2000EDU to RUN

mode or "Stope CPU" when you want to set the IOT2000EDU to STOP mode.

2. Click "OK" in response to the confirmation prompt.

Or:

1. Activate the "Online Tools" task card of the IOT2000EDU.

2. Click the "RUN" button in the "CPU control panel" pane if you want to change the
IOT2000EDU to RUN mode or the "STOP" button if you want to change the IOT2000EDU
to STOP mode.

3. Click "OK" in response to the confirmation prompt.

 Note

Only execute the RUN function when the IOT2000EDU is in "STOP" mode. And you only
execute the STOP function when the device is in "RUN" mode. Otherwise you will receive an
error message.

 Operating IOT2000EDU
 8.2 RUN/STOP/MRES functions via command line

IOT2000EDU
Operating Manual, 03/2018, A5E42342500-AB 39

MRES
The MRES function allows you to perform a memory reset of the CPU. The memory of the
device is deleted in the process and the device is set to the so-called "initial state".

This means:

● All user data is deleted.

● Depending on the target system, user programs and hardware configurations can be
deleted.

● All connections to the module are disconnected.

Proceed as follows to perform a memory reset:

1. Activate the "Online Tools" task card of the IOT2000EDU.

2. Click the "MRES" button in the "CPU operator panel" palette.

3. Click "OK" in response to the confirmation prompt.

8.2 RUN/STOP/MRES functions via command line
In the chapter below you will learn how to change the operating state of the IOT2000EDU
using the command line program "CPU_Control". The program was installed together with
the "IOT2000EDU" application in the directory "/usr/local/bin".

"CPU_Control" can currently execute five commands: RUN, STOP, MRES, Shutdown and
Status

RUN mode
Use the following command to switch the IOT2000EDU to RUN mode:

CPU_Control run

STOP mode
Use the following command to switch the IOT2000EDU to STOP mode:

CPU_Control stop

MRES
Keep in mind that you must set the IOT2000EDU to STOP mode before you execute this
command.

You trigger the memory reset of the IOT2000EDU controller with the following command:

CPU_Control mres

Operating IOT2000EDU
8.2 RUN/STOP/MRES functions via command line

 IOT2000EDU
40 Operating Manual, 03/2018, A5E42342500-AB

Shutdown
Use the following command to shut down the IOT2000EDU controller:

CPU_Control shutdown

Status
Use the following command to check the current operating state of the IOT2000EDU
controller:

CPU_Control status

This way you can also check whether a preceding command was successful or has failed.

Help
When you execute the command CPU_Control without any of the five parameters, the
following help screen is displayed:

Usage :

Switch to RUN state : CPU_Control run

Switch to STOP state : CPU_Control stop

Trigger MASTER RESET : CPU_Control mres

Shutdown the Controller : CPU_Control shutdown

Get Status : CPU_Control status

Show version info : CPU_Control -v

 Operating IOT2000EDU
 8.3 RUN/STOP/MRES via Web server

IOT2000EDU
Operating Manual, 03/2018, A5E42342500-AB 41

8.3 RUN/STOP/MRES via Web server

On this page of the Web server, you can change the operating mode of the IOT2000EDU
using the buttons and perform a memory reset of the IOT2000EDU. You can find additional
information on this in the "Home page (Page 44)" section.

 IOT2000EDU
42 Operating Manual, 03/2018, A5E42342500-AB

 Web server 9
9.1 Introduction

The following section describes the IOT2000EDU Web server activation, Web page content
and interaction with the IOT2000EDU.

The IOT2000EDU Web server is supplied automatically with the installation of the
IOT2000EDU installation package "IOT2000EDU_1.1.0_i586.ipk".

9.2 Requirements
Successful installation of the IOT2000EDU V1.1 requires the following:

● "init system" must be present in the operating system.
You can see if "init system" is present by checking whether "/etc/init.d" is present in the
operating system.

● "node v6.9.2" package must be available in the operating system

9.3 Operating the Web server with Linux commands
The IOT2000EDU installation automatically adds the Web server application to the autostart
service and activates the process. If the system overloads or possibly crashes, you can start
the IOT2000EDU Web server manually with the following command:
 /etc/init.d/IOT2000Web start

The IOT2000EDU Web server is automatically activated during the boot process of the
IOT20x0. You can also still use the following commands:

● Stop Web server: /etc/init.d/IOT2000Web stop

● Display Web server status: /etc/init.d/IOT2000Web status

 Web server
 9.4 Accessing Web server

IOT2000EDU
Operating Manual, 03/2018, A5E42342500-AB 43

9.4 Accessing Web server
To access the Web server, use the IOT20x0 IP address via port "3000" as ipaddress:3000

Example:

192.168.200.1:3000

If the IOT2000EDU is not running on an IOT20x0 device, the server refers you to the
following error page:

9.5 Web server pages

9.5.1 Introduction
The following three Web pages are the main component of the IOT2000EDU Web server:

● Home page

● Identification

● Diagnostic buffer

Web pages are not automatically updated. You therefore have to load the pages manually if
you want to update the website.

Web server
9.5 Web server pages

 IOT2000EDU
44 Operating Manual, 03/2018, A5E42342500-AB

9.5.2 Home page

The home page is the default Web page of the IOT2000EDU Web server. On this page, you
can see the status of the IOT2000EDU based on the colored LEDs. Each LED has its own
color during activity. However, only one LED can light up at a time. You can change the
operating mode of the IOT2000EDU using the "RUN" and "STOP" buttons, and perform a
memory reset of the IOT2000EDU using the "MRES" button.

 Web server
 9.5 Web server pages

IOT2000EDU
Operating Manual, 03/2018, A5E42342500-AB 45

The LEDs can indicate the following states of the IOT2000EDU:

"RUN" The "RUN" button is grayed-out and the "RUN" LED lights green.
"STOP" The "STOP" button is grayed-out and the "STOP" LED lights yellow.
"ERROR" The "RUN" and "STOP" buttons are grayed-out and the "ERROR" LED lights red.

Web server
9.5 Web server pages

 IOT2000EDU
46 Operating Manual, 03/2018, A5E42342500-AB

9.5.3 Identification

This page contains identification, maintenance and basic project information that has been
loaded from the TIA Portal to the IOT2000EDU.

 Web server
 9.5 Web server pages

IOT2000EDU
Operating Manual, 03/2018, A5E42342500-AB 47

9.5.4 Diagnostic buffer

This page contains all diagnostic logs created by an event in the IOT2000EDU.

At the top of the page, you can find the events and related general information, such as
event ID, time and date.

When you select an entry from the list, detailed information is displayed at the bottom of the
page.

 IOT2000EDU
48 Operating Manual, 03/2018, A5E42342500-AB

 Function library 10

The CPU function library is a binary file that contains executable functions. The CPU function
library can be called by the IOT2000EDU.

This allows you to implement your own software in a higher programming language (C/C++)
and have it work with the IOT2000EDU.

10.1 Overview of the CPU function library
With a development environment like Eclipse, you can create a CPU function library as a
"Shared Object (SO)". The SO contains your software written in the C/C++ programming
language. You program your user program in the TIA Portal so that the TIA Portal calls the
"CREA_COM" (SFB65001) and "EXEC_COM" (SFB65002) instructions. This causes the SO
to be loaded dynamically and your code being executed directly by the IOT2000EDU user
program.

To connect to your software, call the instructions from the IOT2000EDU program. Using the
"CREA_COM" instruction, the IOT2000EDU loads an SO. The "EXEC_COM" instruction
executes the loaded SO. The TIA Portal contains these two instructions.

By using the CPU function libraries to integrate your software into a user program you can
enhance the performance of an IOT2000EDU user program.

The use of a CPU function library offers you the following advantages:

● Recording of special control logic written in C or C++

● Using complex or proprietary algorithms or control functions, e.g. PID or gas flow. These
algorithms can be written and maintained in C/C++ using integrated development
environments (IDE) such as Eclipse, or integrated from model-based development
environments such as Matlab/Simulink.

● Connecting to other applications or devices, such as Motion Control or Arduino Shields,
from third-party manufacturers. Many manufacturers distribute their Arduino drivers
in C/C++.

● Accessing functions of the IOT20x0 board which cannot be accessed with standard
programming languages.

 Function library
 10.2 Creating a user-defined SO file

IOT2000EDU
Operating Manual, 03/2018, A5E42342500-AB 49

① Use CCX to embed your C/C++ code into an SO.

The CPU function library allows you to create your own thread functions. These allow you to
execute your own code outside the main thread of the execution.

Programming multiple function blocks
IOT2000EDU can load more than one SO. Each SO can perform several tasks. When the
"CREA_COM" instruction loads an SO, it outputs a unique object handle (OBJHandle).
Calling the "EXEC_COM" instruction uses the OBJ handle of a specific object to execute the
software for the same SO.

10.2 Creating a user-defined SO file
The functions of a function library are implemented by means of the "EDU_Function.cpp" file.
The "EDU_Function.cpp" file is available in the supplied example project. The most important
function within the file is the "Execute" function, in which you embed the actual functions of
your function library.

Function library
10.2 Creating a user-defined SO file

 IOT2000EDU
50 Operating Manual, 03/2018, A5E42342500-AB

10.2.1 Programming the "Execute" function
The "Execute" function is the function that is started from the user program with the
"EXEC_COM" instruction. The following parameters are transferred when it is called:

● Pointer to the buffer of the input data

● Pointer to the buffer of the output data

● Length of buffers

● Command variable

external "C" SEA_EXT_CALL EDU_RESULT Execute (unsigned long command, long nInBytes,byte bInData [],
long nOutBytes, long * pnUsedOutBytes, byte bOutData [])

{

 CWinLCReadData Input(nInBytes, bInData);

 CWinLCReadWriteData Output(nOutBytes, bOutData);

 EDU_RESULT retVal = EDU_SUCCESS;

 switch(command)

 {

 case 0:

 // add your functions here

 retVal = Standard_Deviation(Input, Output);

 break;

 case 1:

 // add your functions here

 retVal = Function_1(Input, Output);

 break;

 default:

 retVal = EDU_COMMAND_NOT_IMPLEMENTED;

 }

 *pnUsedOutBytes = Output.EDU_LastByteChanged() + 1;

 return retVal;

} //
Execute

 Function library
 10.2 Creating a user-defined SO file

IOT2000EDU
Operating Manual, 03/2018, A5E42342500-AB 51

The interface of the "Execute" function must not be changed. The parameters are defined as
follows:

● Unsigned long command:
The "command" parameter makes it possible to implement various functions within a
function library. These functions are identified and called via a "Switch case" instruction
This allows almost any number of functions to be implemented within a function library.

● Long nInBytes:
This parameter contains the length of the input data buffer in bytes.

● byte bInData []:
The parameter is a pointer to the input data buffer. The individual variables are arranged
one after the other as they are stored by the IOT2000EDU user program. The individual
input values can be read using the "Data Access Helper" classes.
For details on this, see section "Data Access Helper classes (Page 53)".

● long nOutBytes:
This parameter contains the length of the output data buffer in bytes.

● long * pnUsedOutBytes:
This parameter contains the length of the output data buffer length actually used.

● byte bOutData []:
This parameter is a pointer to the output parameter buffer. The individual variables are
located one behind the other as they are to be used by the IOT2000EDU user program.
Individual input values can be read or written using the "Data Access Helper" classes.
For details on this, see section "Data Access Helper classes (Page 53)".

● Return value:
EDU_Result returns the status value or error messages of the called function. The
standard return values (e.g. EDU_SUCCESS) are defined in the "EDUso.h" file.

10.2.2 Programming additional functions
In addition to the "Execute" function, there are other functions that are called automatically in
certain situations. These functions must be included in the code, but can otherwise be left
blank.

The interface functions of the CPU function library are initially empty. This allows you to
program according to the requirements of your application.

IOT2000EDU Runtime automatically calls these interface functions when:

● The IOT2000EDU user program loads the SO.

● The IOT2000EDU user program executes the SO simultaneously.

● The IOT2000EDU changes from STOP to STARTUP, from HOLD to RUN, or when the
SO is loaded for the first time.

● The IOT2000EDU switches to STOP or HOLD mode.

Function library
10.2 Creating a user-defined SO file

 IOT2000EDU
52 Operating Manual, 03/2018, A5E42342500-AB

The interface functions:

ODKCreate:

The "ODKCreate" function initializes data or creates objects after the "CREA_COM"
instruction has loaded the SO. If the Shared Object is initially loaded and you want to
perform evaluations, load it into "ODKCreate". Otherwise leave "ODKCreate" empty.

Activate:

The "Activate" function is called before the IOT2000EDU changes from STOP or HOLD
mode to STARTUP or RUN mode.
"Activate" is always called after the SO is loaded and before the first call of the "Execute"
function starts. If you want to perform evaluations before the initial call of the "Execute"
function, you can load it into the "Activate" function. Otherwise, leave "Activate" empty.

DeActivate:

The "DeActivate" function is called after IOT2000EDU changes from STARTUP or RUN
mode to STOP or HOLD mode. If you want to perform the evaluations after the change from
STOP or HOLD, you can load them into the "DeActivate" function. Otherwise, leave the
function empty.

ODKRelease:

The "ODKRelease" function is responsible for publishing/unloading the shared object. If you
want to perform evaluations when the object is published, load it in ODKRelease. Otherwise,
leave the function empty.

The IOT2000EDU publishes the SO during a memory reset (MRES) or a controller
shutdown. The IOT2000EDU always calls "DeActivate" before calling "ODKRelease",
because both the MRES and the controller shutdown put the controller in STOP mode.

Scan cycle impact:

Your software in the "Execute" function and the sub-functions are part of the Main Program
Scan cycle when called by the "EXEC_COM" instruction. The IOT2000EDU program
executes the instruction which your software calls as a simple instruction. This instruction
call cannot be interrupted. The watchdog timer, OBs and process alarms are not available
during execution of your software. They are operated after the instruction of your software
has been called.

 Note

User-specific software that significantly extends cycle times delays the evaluation of critical
activities in the controller.

To avoid delays in the OB scan cycle, do not write evaluations into the "Execute" function or
sub-functions that extend the scan cycle beyond an acceptable cycle time. This also includes
calls to a non-deterministic function, such as "Printf".

 Note

The CPU function library guarantees that IOT2000EDU calls these functions from a single
execution string.

 Function library
 10.2 Creating a user-defined SO file

IOT2000EDU
Operating Manual, 03/2018, A5E42342500-AB 53

10.2.3 Data Access Helper classes
The Data Access Helper classes allow access to the variables transferred by IOT2000EDU
in the input and output parameters.

The two Data Access Helper classes are:

● CWinLCReadData: Reading the variables from the input parameters

● CWinLCReadWriteData: Reading and writing the variables in the output parameters

The IOT2000EDU controller transfers the input parameters in S7 format and also expects
the output parameters to be returned in S7 format. All input and output variables starting
from the passed pointers are stored one after the other. Note the following:

To use the data in C/C++ code, it must be converted in the Data Access Helper classes
using the access functions. Likewise, data must be converted into the S7 format before
being returned to the IOT2000EDU.

The methods EDU_ReadS7<data type> and EDU_WriteS7<data type> perform these type
conversions automatically and thus allow easy and secure access to the input and output
variables.

The example project shows you how to use the helper classes with a basic example:

EDU_RESULT Function_1 (CWinLCReadData& rInput ,CWinLCReadWriteData& rOutput)

{

 short MyInteger;

 float MyReal;

 bool MyBool;

 // extract input variables from input data buffer

 rInput.EDU_ReadS7INT(0,MyInteger);

rInput.EDU_ReadS7REAL(2,MyReal);

rInput.EDU_ReadS7BOOL(6,0,MyBool);

 // Add your Code here

 // printf("\n---------- InputData ----------\nMyInteger: %d \n MyReal: %.5f
\n MyBool: %s\n ",MyInteger,MyReal,MyBool ? "TRUE" : "FALSE");

 MyInteger +=5;

 MyReal += (float)3.0000;

 MyBool = false;

 // printf("\n---------- OutputData ----------\nMyInteger: %d \n MyReal: %.5f
\n MyBool: %s\n ",MyInteger,MyReal,MyBool ? "TRUE" : "FALSE");

 // put output variables into output data buffer

 rOutput.EDU_WriteS7INT(0,MyInteger);

 rOutput.EDU_WriteS7REAL(2,MyReal);

 rOutput.EDU_WriteS7BOOL(6,0,MyBool);

 return EDU_SUCCESS;

}

Function library
10.2 Creating a user-defined SO file

 IOT2000EDU
54 Operating Manual, 03/2018, A5E42342500-AB

In the example project, a UDT with the following elements is used as an input parameter:

UDT:

 Integer MyInteger

 Real MyReal

 BOOL MyBool

END UDT

The individual variables or members of the UDT are stored in the input parameter as follows:

Offset 0 2 6

MyInteger MyReal MyBool

Supported S7 data types
The helper classes support the following S7 data types:

Table 10- 1 CWinLCReadData

EDU_GetBuffer Returns a pointer to the data area.
EDU_SetBuffer Initializes the "Input Data" area and file size.
EDU_GetBufferSize Returns the size of the data area (in bytes).
EDU_ReadS7BYTE Reads a byte (1 byte) from the data area.
EDU_ReadS7WORD Reads a word (2 bytes) from the data area.
EDU_ReadS7DWORD Reads a double word (4 bytes) from the data area.
EDU_ReadS7S5TIME Reads a 16-bit time value (2 bytes).
EDU_ReadS7DATE Reads a date value (2 bytes) from the data area.
EDU_ReadS7TIME_OF_DAY Reads the time (4 bytes) from the data area.
EDU_ReadS7INT Reads an integer (2 bytes) from the data area.
EDU_ReadS7DINT Reads a double integer (4 bytes) from the data area.
EDU_ReadS7REAL Reads a floating point number (4 bytes) from the data area.
EDU_ReadS7TIME Reads a time value (4 bytes) from the data area.
EDU_ReadS7CHAR Reads a character (1 byte) from the data area.
EDU_ReadS7BOOL Reads a Boolean value (1 bit) from the data area.
EDU_ReadS7STRING_LEN Reads the string length information of an S7 string in the data

area.
EDU_ReadS7STRING Reads an S7 string from the data area and returns it as C++

character string.
EDU_ReadS7DATE_AND_TIME Reads a generic data and time area.

 Function library
 10.2 Creating a user-defined SO file

IOT2000EDU
Operating Manual, 03/2018, A5E42342500-AB 55

Table 10- 2 CWinLCReadWriteData

EDU_GetBuffer Returns a pointer to the data area.
EDU_SetBuffer Initializes the "Input Data" area and file size.
EDU_GetBufferSize Returns the size of the data area (in bytes).
EDU_WriteS7BYTE Writes a bytes (1 byte) to the data area.
EDU_WriteS7WORD Writes a WORD (2 bytes) to the data area.
EDU_WriteS7DWORD Writes a double WORD (4 bytes) to the data area.
EDU_WriteS7INT Writes a 16-bit time value (2 bytes).
EDU_WriteS7DINT Writes a date value (2 bytes) to the data area.
EDU_WriteS7S5TIME Writes the time of day (4 bytes) to the data area.
EDU_WriteS7TIME Writes an integer (2 bytes) to the data area.
EDU_WriteS7DATE Writes a double integer (4 bytes) to the data area.
EDU_WriteS7TIME_OF_DAY Writes a floating point number (4 bytes) to the data area.
EDU_WriteS7CHAR Writes a time value (4 bytes) to the data area.
EDU_WriteS7REAL Writes a character (1 byte) to the data area.
EDU_WriteS7BOOL Writes a boolean value (1 bit) to the data area.
EDU_WriteS7STRING Writes an S7 string to the data area and returns it as C++ charac-

ters (string).
EDU_WriteS7DATE_AND_TIME Writes a generic data and time range.

You can obtain information about the relevant data types in the "Data types (Page 56)"
section.

You can find additional information about the supported data types of the IOT2000EDU in
the online help of the TIA Portal. The same range of data types can be used in the
IOT2000EDU as in an S7-300 controller.

 Note

The methods of the Data Access Helper classes may only be used within the "Execute"
function. The helper classes therefore help you avoid programming errors, e.g. out-of-range
errors or writing to invalid pointers.

Function library
10.2 Creating a user-defined SO file

 IOT2000EDU
56 Operating Manual, 03/2018, A5E42342500-AB

10.2.4 Data types
The following table lists examples of all relevant data types:

C/C++ (Simulink Coder) C/C++ (IOT2000EDU

function library)
TIA Portal Bytes Helper functions

EDU_ReadS7<data
type>
EDU_WriteS7<data type>

boolean_T bool BOOL 1 bit EDU_ReadS7BOOL
EDU_WriteS7BOOL

int8_T, uint8_T, char_T,
uchar_T, byte_T

char CHAR 1 EDU_ReadS7CHAR
EDU_WriteS7CHAR

int16_T, uint16_T short INT 2 EDU_ReadS7INT
EDU_WriteS7INT

int32_T, uint32_T, int_T,
uint_T

long DINT 4 EDU_ReadS7DINT
EDU_WriteS7DINT

ulong_T long DINT 4 EDU_ReadS7DINT
EDU_WriteS7DINT

real_T float REAL (4 bytes)
Note: Data loss

4 EDU_ReadS7REAL
EDU_WriteS7REAL

real32_T float REAL 4 EDU_ReadS7REAL
EDU_WriteS7REAL

"Typ"_T["Length"] "Typ" ["Length"] Array [lo .. hi] of
type

Depending on size and
type

Struct (Simulink: BUS
element)

struct Struct Depending on size and
type

 Function library
 10.3 Creating function library programs with Eclipse

IOT2000EDU
Operating Manual, 03/2018, A5E42342500-AB 57

10.3 Creating function library programs with Eclipse
This section describes the functionality and implementation of a CPU function library
example program that was created in Eclipse IDE. Furthermore, you can learn how to
compile the program and write it to the IOT20x0 devices. In addition, you can learn how to
create a simple TIA Portal project and how to use a shared object (SO) in the PLC user
program. The following figure provides an overview of the CPU function library applications:

Example CPU function library project in Eclipse
You can use the Eclipse example project to start creating a function library (SO). This
example project contains all interface functions with a simple customer-specific application.
This application calculates the "Standard Deviation" of a number group.

In addition to the IOT2000EDU installation package, the example project is delivered as a
separate file.

You can also create your own project in another IDE in addition to Eclipse. But you must
take notice of the system requirements.

You can work with Windows or a Linux operating system. If you work with Windows, you
need a cross compiler.

If the IOT2000EDU was installed on the IOT20x0 devices, the following packages are
already pre-installed:

● libc6

● libstdc++6

IOT2000EDU requires the libc6 and libstdc++6 libraries. Therefore, both the native compiler
and the cross compiler must support these libraries to generate the SO file. A few alternative
development environments are recommended for generating the SO.

Function library
10.3 Creating function library programs with Eclipse

 IOT2000EDU
58 Operating Manual, 03/2018, A5E42342500-AB

10.3.1 Alternative development environments

Windows: Install Eclipse via ODK 1500S
If ODK 1500S is already installed in the system, you can access the Eclipse version (Kepler)
under the following path:

"C:\Program Files (x86)\Siemens\Automation\ODK1500S\V2.5\eclipse\Eclipse.exe"

Import the example program with the "Release" build or create your own project using Kepler
Eclipse. To generate an SO for IOT2000EDU, install IOT2000 SDK for cross compiling with
Windows operating systems. Follow the IOT2000 SDK instructions below for the cross
compiler settings.

Windows: Download and install Eclipse
You need "Eclipse IDE for C/C++ Developers" to create a new C/C++ project or to open the
example project, "EDU_StandardDeviation". You can download it from the following link:
https://www.eclipse.org/downloads/eclipse-packages/
(https://www.eclipse.org/downloads/eclipse-packages/)

To generate an SO for IOT2000EDU, install IOT2000 SDK for cross compiling with Windows
operating systems. Follow the IOT2000 SDK instructions (Page 59) for cross compiler
settings.

Linux: Install Eclipse
If you are using a Linux operating system, download an Eclipse version. Under Linux, a
native compiler is available that is compatible with the libc6 and libstdc++6 libraries.

It is also possible to create a cross compiler for Yocto.

 Function library
 10.3 Creating function library programs with Eclipse

IOT2000EDU
Operating Manual, 03/2018, A5E42342500-AB 59

10.3.2 SDK installation in Windows
The IOT2000 SDK version must match the version of the example image and only works
with a Windows operating system. You can download the plug-in under the following link:
SIMATIC IOT2000 Eclipse Plug-in
(https://support.industry.siemens.com/cs/document/109744106/simatic-iot2000-eclipse-
plugin?dti=0&lc=en-WW)

To install the SDK, proceed as follows:

1. Start 7-Zip as an administrator.

2. Unzip the downloaded file, "IOT2000_sdk_windows_2.1.2.zip".
Note that a newer version of the SDK may already be available since creation of this
manual.
The "iot2000_sdk_windows.tar" file is unzipped.

3. Unzip the file "IOT2000_sdk_windows.tar".

Function library
10.3 Creating function library programs with Eclipse

 IOT2000EDU
60 Operating Manual, 03/2018, A5E42342500-AB

A dialog opens asking you whether you want to overwrite the files specific to
IOT2000 SDK.

4. Click on the "Yes, all" button to confirm the dialog.

 Function library
 10.3 Creating function library programs with Eclipse

IOT2000EDU
Operating Manual, 03/2018, A5E42342500-AB 61

5. If the "Cannot create hard link" dialog appears during unpacking, click the "Ignore" button.

6. Install IOT2000 SDK under the following path:

"D:\IoT2000\Yocto_SDK_iot"

Once you have installed the SDK, you can compile or further modify the
EDU_StandardDeviation example project. Alternatively, you can also create your own
Eclipse project.

Function library
10.3 Creating function library programs with Eclipse

 IOT2000EDU
62 Operating Manual, 03/2018, A5E42342500-AB

10.3.3 Compile the SO file with the example project
The project files and folder structures are displayed in the following figure:

You can write your software in the files "EDU_Function.cpp" and "EDU_Function.h". These
files contain all interface functions of the CPU function library.

The "Execute" function is activated every time SFB65002 (EXEC_COM) is called. The
EXEC_COM instruction in the TIA Portal contains the "Command" parameter. This
corresponds to the "switch case" condition in the SO file.

 Function library
 10.3 Creating function library programs with Eclipse

IOT2000EDU
Operating Manual, 03/2018, A5E42342500-AB 63

Add your own "Case x" status using the custom functions. Function prototypes must be
created in the EDU_Function.h file. The example function "Standard_Deviation (Input,
Output)" is placed under the "Case 0" status. This means that if EXEC_COM is called with
the "0" command, this involves "Case 0" and the "Standard_Deviation" function is executed.
If you are creating your own project on any operating system or IDE, you need to add the
following parameters:

_M_IX86 Defined symbol or pre-processors
RELEASE
Position Independent Code (-fPIC)
-c -m32 -march=i586 Compiler flags
"${workspace:/${ProjName}/EDU}" Including directories
"${workspace:/${ProjName}/Header}"

Compile the project after setting the required compile and link parameters.

The SO file "libEDU_StandardDeviation.so" is generated.

Function library
10.3 Creating function library programs with Eclipse

 IOT2000EDU
64 Operating Manual, 03/2018, A5E42342500-AB

10.3.4 Cross compiling with the IOT2000 SDK installation
To create a new Eclipse project, you need to specify a cross compiler directory and set
compiler flags. You must also copy the following folders of the example project to the
directory of the new project:

● Header

● EDU

● Source

 Function library
 10.3 Creating function library programs with Eclipse

IOT2000EDU
Operating Manual, 03/2018, A5E42342500-AB 65

Enter the following compiler options in the properties of the new project:

Table 10- 3 C/C++ Build

Property Compiler option Comment
Builder type: Internal builder
Environ-
ment:

POKY_HOME: D:\IoT2000\Yocto_SDK_iot\sysroots\i58
6-nlp-32-poky-linux

PATH: D:\IoT2000\Yocto_SDK_iot\sysroots\i68
6-pokysdk-mingw32\usr\bin\i586-poky-
linux

Insert this path at the end of the PATH
variable.

Current toolchain: Cross GCC
Settings: Cross GCC

Compiler:
Com-
mand:

i586-poky-linux-gcc Enter the same settings as for a Cross
G++ Compiler.

Cross G++
Compiler:

Com-
mand:

i586-poky-linux-g++

Defined
symbols
(-D):

RELEASE, _M_IX86

In-
cludes:

"${ workspace:/${ProjName}/Header}"
"${ workspace:/${ProjName}/EDU}"
"${POKY_HOME}\usr\include"
"${POKY_HOME}\usr\include\c++\5.3.0
"
"${POKY_HOME}\usr\include\c++\5.3.0
\i586-poky-linux"
"${POKY_HOME}\usr\include\mraa"
"${POKY_HOME}\usr\include\upm"

Miscel-
laneous:

-O0 -g3 -Wall -c -fmessage-length=0 -
m32 -march=i586 -c -ffunction-sections
-fdata-sections

Position Independent Code (-fPIC) Enable this option.
Cross G++
linker

Com-
mand:

i586-poky-linux-g++

Library
search
path (-
L):

"${POKY_HOME}"

Miscel-
laneous:

-m32 -fno-use-linker-plugin --
sys-
root=D:\\IoT2000\\Yocto_SDK_iot\\sysr
oots\\i586-nlp-32-poky-linux

Cross GCC
Assembler

Com-
mand:

i586-poky-linux-as

Function library
10.3 Creating function library programs with Eclipse

 IOT2000EDU
66 Operating Manual, 03/2018, A5E42342500-AB

These options have already been created for the example project.

 Note

Note that you should use your specific project name and SDK path, e.g. with "${
workspace:/${ProjName}, POKY_HOME, PATH and --systemroot.

10.3.5 Loading an SO file to IOT20X0
Depending on the development environment you used to compile the SO file, you can load
the SO file onto the IOT20X0 device in one of three ways.

 Note

The following description is based on the example SO file "libEDU_StandardDeviation.so".

● You are using a Windows operating system and have used the cross compiler:

– Transfer the "libEDU_StandardDeviation.so" file using the "pscp.exe" program. You
can download it free of charge from the Internet.

– Open a Windows command line and start pscp.exe with the command "-scp":
For example: pscp.exe -scp ..\EDU_StandardDeviation
(Eclipse)\Release\libEDU_StandardDeviation.so root@192.169.200.1:/home/root/

– In this example, root@192.168.200.1:/home/root/ is used for the IOT2000 device IP
and for the directory. You can move the SO to any directory.

● You have compiled your software on a Linux operating system:

– Use the command "scp" in a terminal.

– For example: sudo scp /home/Alex/EDU_StandardDeviation
(Eclipse)\Release\libEDU_StandardDeviation.so root@192.168.200.1:/home/root/

● You can also copy the SO to a USB flash drive:

– When you connect the USB flash drive to the IOT20x0 device, a device name is
displayed under /dev folder. The USB flash drive can then be mounted in any
temporary directory. You can now copy the SO.
For example:

Alex@ubuntu:~$ mount /dev/sdx /media (sdx: may be sdb, sdc …)

Alex@ubuntu:~$ cp /media/ libEDU_StandardDeviation.so /home/Alex/

 Function library
 10.4 Preparing the TIA Portal project for the application

IOT2000EDU
Operating Manual, 03/2018, A5E42342500-AB 67

10.4 Preparing the TIA Portal project for the application
To load and execute an SO, you must call the instructions with the correct parameters in the
TIA Portal project:

1. Ensure that your SO file has been loaded on the IOT2000 device.
For the IOT2000EDU to be able to an SO, the CREA_COM instruction is called with two
parameters:

– PROGID: Points to the object name with the full directory path. This parameter has the
"string" type.
'*so:/home/root/libEDU_StandardDeviation.so'
The *.so prefix must be written before the object name pointing to the *.so file.

– STATUS: Returns a handle (OBJHandle) or an error code. If the return value is
between 0x0001 and 0x7FFF, it is an object handle. If it is between 0x8001 and
0x810C, it is an error code.

2. In general, instructions are created in a function block, in this case
"Load_StandardDeviation[FB1]". To load the SO, an OB then calls the instructions,
e.g. OB100.

3. Drag the instructions directly from the "Advanced instructions" palette under the

"Instructions" task card into the programming editor.

Function library
10.4 Preparing the TIA Portal project for the application

 IOT2000EDU
68 Operating Manual, 03/2018, A5E42342500-AB

4. If required, you can also change the static name of the instructions in the module
interface, e.g. "CREA_COM_instance" and "EXEC_COM_instance".

 Function library
 10.4 Preparing the TIA Portal project for the application

IOT2000EDU
Operating Manual, 03/2018, A5E42342500-AB 69

5. The "EXEC_COM" instruction calls the "Execute" function of the SO. This function is
specified by the OBJHandle parameter.
The OBJHandle is the return value of the "CREA_COM" instruction.
If you want to load two or more shared libraries, the OBJHandle is used to distinguish
between the shared libraries.
The "EXEC_COM" instruction is inserted into a new function block, in this case
Standard_Deviation[FB2], and is called Main[OB1].

6. The "Command" parameter is also important. The "Command" parameter specifies a
special switch case status in the "Execute" function of the SO.
In this example, the "Standard_Deviation(Input,Output)" function is placed below "case 0".
Therefore, "Command" must have the "0" value for the function to be executed.

① "Data"."init_done" If the SO was successfully loaded, this value is "TRUE".
② "Data".SD_input A set of numbers placed in "Data[DB2]". You can increase the size or change

the numbers if this requires a different standard deviation calculation.
③ "Data"."Standard Deviation" Output of the calculation.

Function library
10.4 Preparing the TIA Portal project for the application

 IOT2000EDU
70 Operating Manual, 03/2018, A5E42342500-AB

Editing input and output data in the SO file
Each function in the switch case has two input values, are "objects":

● Input data (rInput)

● Output data (rOutput)

To get variables out of these objects, use the data types supported by the helper classes,
e.g. "EDU_ReadS7INT".

Example:

You first need to define all structures, e.g. "UDT", in the "Data" data block in the TIA Portal.

This structure can be both an input as well as an output value for the "EXEC_COM"
instruction in the TIA Portal.

"InputData := "Data".UDT" in the TIA Portal corresponds to rInput in the SO file. All struct
variables must continue to be taken individually from the rInput.

For example: the struct variable "MyBool" in UDT. This variable was read from the SO file
using rInput.EDU_ReadS7Bool(6,0,Mybool);.

 Function library
 10.4 Preparing the TIA Portal project for the application

IOT2000EDU
Operating Manual, 03/2018, A5E42342500-AB 71

10.4.1 Reference of the IOT2000EDU function library Instructions
The IOT2000EDU function library provides two instructions in the TIA Portal:

● CREA_COM (SFB65001)

● EXEC_COM (SFB65002)

10.4.1.1 CREA_COM (SFB65001)
The "CREA_COM" instruction loads an instance of the SO specified by the PROGID
parameter. The IOT2000EDU program assigns the InstanceID parameter.

The following table shows the interfaces of the "CREA_COM" instruction:

Address Declaration Name Data type Comment
0.0 In PROGID STRING[254] ID of the SO to be loaded
256 Out Status WORD SFB return code: Error code or

OBJHandle code

The PROGID is a string containing the file name and storage path of the SO.

For example: *so:/home/User_name/Desktop/Final_Project/CalculateStandartDeviation.so

The SO name is "CalculateStandartDeviation.so".

The "CREA_COM" instruction evaluates the input conditions and performs the following
actions:

1. If the SO has not yet been loaded, "CREA_COM" calls the "ODKCreate" function to
create the SO. To create a ClassID, the InstanceID parameter is used. "CREA_COM"
creates only one instance of this object. "CREA_COM" adds the object instance to the
internal list of created IOT2000EDU objects.

2. If the SO has already been created, "CREA_COM" retains the IOT2000EDU function
block handle for previously created objects (an index to locate the Object Pointer).

3. If this is the first call to "CREA_COM" after exiting STOP mode, or if the SO has just been
created, "CREA_COM" calls the Active function.

4. "CREA_COM" sets the status parameter for the IOT2000EDU function block handle (or
error code) and sets the BR bit.

Function library
10.4 Preparing the TIA Portal project for the application

 IOT2000EDU
72 Operating Manual, 03/2018, A5E42342500-AB

Return codes

Return code Alarm Meaning
0x0001 - 0x7FFF OBJ_HANDLE Returned "object handle".
0x807F ERROR_INTERNAL Internal error.
0x8001 E_EXCEPTION An exception has occurred.
0x8102 E_CLSID_FAILED Call of CLSIDFromProgID failed.
0x8103 E_COINITIALIZE_FAILED Call of CoInitializeEd failed.
0x8104 E_CREATE_INSTANCE_FAILED Call of CoCreateInstance failed.
0x8105 E_LOAD_LIBRARY_FAILED The library was not loaded.
0x8106 E_NT_RESPONSE_TIMEOUT A response timeout has occurred in Win-

dows.
0x8107 E_INVALID_OB_STATE The controller is in an invalid operating state

for planning an OB.
0x8108 E_INVALID_OB_SCHEDULE Schedule information for the OB is invalid.
0x8109 E_INVALID_INSTANCEID Instance ID for calling the "CREA_COM"

instruction is invalid.
0x810A E_START_ODKPROXY_FAILED The controller could not load the proxy DLL.
0x810B E_CREATE_SHAREMEM_FAILED The controller could not create or initialize a

shared memory area.
0x810C E_OPTION_NOT_AVAILABLE An attempt has been made to access an

unavailable option.

10.4.1.2 EXEC_COM (SFB65002)
The "EXEC_COM" instruction calls the "Execute" function of the SO specified by the
OBJHandle parameter.

The following table shows the interfaces of the "EXEC_COM" instruction:

Address Declaration Name Data type Comment
0.0 In OBJHandle WORD Handle returned by "CREA_COM".
2.0 In Command DWORD Index of the function or command to be

executed
6.0 In InputData ANY Pointer to function input area
16.0 In OutputData ANY Pointer to function output area
26.0 Out Status WORD Instruction error code or return code from

the "Execute" function

The "EXEC_COM" instruction:

1. Verifies that "CREA_COM" has been called and that the object handle is valid.

2. Processes the ANY pointers and returns the error codes for invalid ANY pointer
parameters.

3. Calls the "Execute" function of the SO.

 Function library
 10.5 Creating function library programs with Matlab Simulink

IOT2000EDU
Operating Manual, 03/2018, A5E42342500-AB 73

4. Assigns the input and output pointer areas to the IOT2000EDU Data Access Helper
classes.

5. Sets the status parameter for the "Execute" return code, unless an error has occurred
beforehand, and returns to the IOT2000EDU program.

 Note

Note that the runtime of the called function adds to the cycle time.

Return codes

Return code Alarm Meaning
0x0000 NO_ERRORS No errors
0x807F ERRORS_INTERNAL Internal error.
0x8001 E_EXCEPTION An exception has occurred.
0x8002 E_NO_VALID_INPUT Input: The ANY pointer is invalid.
0x8003 E_INPUT_RANGE_INVALID Input: The ANY pointer range is invalid.
0x8005 E_NO_VALID_INPUT Output: The ANY pointer is invalid.
0x8005 E_OUTPUT_RANGE_INVALID Output: The ANY pointer range is invalid.
0x8006 E_OUTPUT_OVERFLOW More bytes were written to the output buffer by the

shared object than were assigned.
0x8007 E_NOT_INITIALIZED Function library system was not initialized: No call

of the "CREA_COM" instruction yet.
0x8008 E_HANDLE_OUT_OF_RANGE The assigned handle value does not match any

valid shared object.
0x8009 E_INPUT_OVERFLOW More bytes were written to the input buffer by the

shared object than were assigned.

10.5 Creating function library programs with Matlab Simulink
Mathworks MATLAB is software for the primary solution of mathematical problems and their
visualization.

Simulink is an add-on for MATLAB for graphical modeling of systems and their simulation.

Simulink Coder Addon enables you to compile C/C++ code directly from a Simulink model.
The IOT2000EDU function library allows you to run C/C++ code in IOT20x0 devices.

 Note

The following screenshots of the code examples may differ from the delivered product.

Function library
10.5 Creating function library programs with Matlab Simulink

 IOT2000EDU
74 Operating Manual, 03/2018, A5E42342500-AB

10.5.1 Requirements
You need the following software:

● TIA Portal V15

● Matlab 2017b in the following configuration:

– Matlab 9.3

– Matlab Coder 3.4

– Embedded Coder 6.13

– Simulink 9.0

– Simulink Coder 8.13

● Eclipse Kepler

● IOT2000 SDK

10.5.2 Creating a Simulink model

Requirement
MATLAB R2017b is open.

Procedure
The procedure is described below using the example of a simple mathematical operation.

1. To create a new Simulink model, click the Simulink icon on the menu bar.

2. Drag-and-drop the following blocks from the Simulink Library Browser :

– Input: under "Simulink > Source > In1"

– Input: under "Simulink > Source > In2"

– Output: under "Simulink > Source > Out1"

– Adding block: under "Simulink > Math Operation > Add"

3. To open the respective block parameters for an input, double-click the corresponding
input block in the Simulink model.

4. Change the "Data type" parameter to "uint8" for both input blocks in the "Block
Parameter" window under "Signal Attributes".

5. Adapt the Simulink parameters (Page 76).

6. Save the model.

Use the name "Sum" for this example.

7. To start the build process in Simulink , select the "Code > C/C++ Code > Build Model"
command in the menu bar.

 Function library
 10.5 Creating function library programs with Matlab Simulink

IOT2000EDU
Operating Manual, 03/2018, A5E42342500-AB 75

Result
The system creates the "Sum_grt_rtw" folder and stores the generated *.cpp and *.h files in
it. The file names are prefixed with the model name, in this case "Sum".

① Generated files
② Input and output parameters
③ Interface functions of the Sum model

Function library
10.5 Creating function library programs with Matlab Simulink

 IOT2000EDU
76 Operating Manual, 03/2018, A5E42342500-AB

10.5.3 Description of Simulink parameters
To adapt the Simulink parameters for the build process, open the "Configuration
Parameters" with the icon in the menu bar.

Figure 10-1 Configuration parameters

Relevant parameters

Solver

A dynamic system is modeled as a mathematical calculation in Simulink. This calculation is
performed at certain time intervals to simulate the execution of the system. The size of this
time interval is referred to as the "Step-Size". The method for calculating the states of a
model is referred to here as solving the model.

● Solver options

Determine the solver selection

– Type: Fixed Step

– Solver: auto

● Fixed-step size: auto

 Function library
 10.5 Creating function library programs with Matlab Simulink

IOT2000EDU
Operating Manual, 03/2018, A5E42342500-AB 77

Code Generation

● Target Selection:

– System target file: grt.tlc (Create Visual C/C++ Solution File for Simulink Coder)

– Language: C++

● Build process:

– Generate code only: "Generate code only" option enabled

– Generate makefile: "Generate makefile" option disabled

● Interface:

– Code interface packaging: Nonreusable function

– MAT-file logging: "MAT-file logging" option disabled

– ASAP2 interface: "ASAP2 interface" option disabled

– External mode: "External mode" option disabled

10.5.4 Integrating the Simulink model into Eclipse
To run the C/C++ code generated by the Simulink Coder on IOT20x0 devices, the code must
be converted by the IOT2000EDU function library. Eclipse is available for this purpose.

Procedure
1. Start Eclipse.

2. Create the "Matlab" folder in "Project Explorer" in your Eclipse project,
"EDU_StandardDeviation".

3. Copy the generated *.cpp and *.h files into the "Matlab" folder.

4. Open the EDU_Function.cpp in "Project Explorer" under "Source".

5. Insert the header file "Sum.h" into the EDU_Function.cpp to access the interface
functions.

Localize the three functions:

– Sum_initialize() under ODKCreate

ODKCreate is called when a shared object (*.so) is loaded.

– Sum_terminate() under ODKRelease

ODKRelease is called when a shutdown operation is performed by IOT2000EDU.

– Sum_step() in each case instruction called by the IOT2000EDU function library using
the instruction "EXEC_COM" under the Execute callback.

Function library
10.5 Creating function library programs with Matlab Simulink

 IOT2000EDU
78 Operating Manual, 03/2018, A5E42342500-AB

6. In the example project, "Function_2 (Input, Output)" is located under "case 2:" Statement.
This function has input and output values, but Sum_step is lacking these values.
Therefore, you must assign the input values before Sum_step and the output values
afterwards, and then adapt them to each other:

 Function library
 10.5 Creating function library programs with Matlab Simulink

IOT2000EDU
Operating Manual, 03/2018, A5E42342500-AB 79

7. Right-click on the Eclipse project "EDU_StandardDeviation" and select "Properties" from
the shortcut menu.

The "Properties for EDU_StandardDeviation" dialog opens.

Figure 10-2 "Properties for EDU_StandardDeviation" dialog

8. Under "C/C++ Build > Settings", insert all paths in the directories in which the files specific
to Matlab/Simulink are located and confirm with "OK".
 For example:

– tmwtypes.h: C:\Program Files\MATLAB\R2017b\extern\include

– simstruc_types.h: C:\Program Files\MATLAB\R2017b\simulink\include

9. To compile the project, click on the icon " ".

Result
The SO file "libEDU_StandardDeviation.so" is created in "Project Explorer" under "Release".

Function library
10.5 Creating function library programs with Matlab Simulink

 IOT2000EDU
80 Operating Manual, 03/2018, A5E42342500-AB

10.5.5 Preparing TIA Portal for the Simulink model
To call the "Sum_Step" function from the IOT2000EDU, you must adapt your TIA program.

Requirement
You have opened the "EDU_StandardDeviation" program in the TIA Portal.

Procedure
Adaptation using the "EDU_StandardDeviation" program as an example.

1. Open the "Data" data block.

Figure 10-3 Assign input and output parameters

2. Add the input parameter (Sum_Inputs) and the output parameter (Sum_Output) that are
transferred to the "Sum_Step" function.

For "Sum_Inputs", assign the "Struct" data type with two variables (In1, In2) with the "Int"
data type.

Assign the "Int" data type for "Sum_Ouput".

 Function library
 10.5 Creating function library programs with Matlab Simulink

IOT2000EDU
Operating Manual, 03/2018, A5E42342500-AB 81

3. Assign the input and output parameters to the "EXEC_COM" instruction via the
"Function_2" function block.

Figure 10-4 Assign "Sum_Step" input and output parameters

4. Load the TIA program into the IOT20x0 device.

 Note

Requirements for successful loading
• You have copied the SO file "libEDU_StandardDeviation.so" into the IOT20x0 device.
• You have defined the path of the SO file in the TIA Portal in the

"Load_StandardDeviation" function block as follows:
"*so:/home/root/libEDU_StandardDeviation.so"

• IOT2000EDU is running.

Function library
10.5 Creating function library programs with Matlab Simulink

 IOT2000EDU
82 Operating Manual, 03/2018, A5E42342500-AB

5. Test and monitor the "Function_2" function block via the watch table by setting the value
"TRUE" in the "exec_Function_2" row of the "Control value" column.

Figure 10-5 Test Sum_Step

6. To change the monitoring value of the output parameter, adjust the control value of the
input parameters and click on the icon " ".

10.5.6 Data type conversion
Convert data types between the IOT2000EDU function library, Simulink Coder and
TIA Portal. Make sure that the converted data types match.

The IOT2000EDU function library supports a maximum of 32 bits (4 bytes). If the data type in
the program of the IOT2000EDU function library is larger than the data type used in the
TIA Portal, data may be lost.

You can find information about data types in the "Data types (Page 56)“ section.

IOT2000EDU
Operating Manual, 03/2018, A5E42342500-AB 83

 OUC communication 11
11.1 Connection establishment

IOT2000EDU supports "Open User Communication (OUC)" using the TCP/IP stack. With
OUC functionality, IOT2000EDU can be used as a server or client, depending on the
requirements of your program.

IOT2000EDU supports "OUC TCP" and UDP connection types.

 Note

"ISO on TCP" is not supported.

IOT2000EDU supports the following OUC instructions for establishing the connection:

● "TCON" (SFC 133)

● "TDISCON" (SFC 134)

These instructions can be found in the TIA Portal in the "Instructions" task card under
"Communication > Open User Communication".

Both TCP and UDP-based OUC connections require the "TCON" and "TDISCON"
instructions.

OUC communication
11.2 Configuring TCON and TDISCON in the TIA Portal

 IOT2000EDU
84 Operating Manual, 03/2018, A5E42342500-AB

11.2 Configuring TCON and TDISCON in the TIA Portal
You can set the input and output parameters of "TCON" and "TDISCON" either manually or
using the TIA Portal configuration wizard.

 OUC communication
 11.3 Data exchange

IOT2000EDU
Operating Manual, 03/2018, A5E42342500-AB 85

11.3 Data exchange
Data can be sent in both directions when the connection is activated. This means data can
be sent and received simultaneously.

The following communication instructions are available for data exchange:

● "TSEND" (SFC 131)

● "TRCV" (SFC 132)

● "TUSEND" (SFC 135)

● "TURCV" (SFC 136)

These instructions can be found in the TIA Portal in the "Instructions" task card under
"Communication > Open User Communication".

OUC communication
11.4 Configuring TSEND, TRCV and TUSEND, TURCV in the TIA Portal

 IOT2000EDU
86 Operating Manual, 03/2018, A5E42342500-AB

11.4 Configuring TSEND, TRCV and TUSEND, TURCV in the TIA Portal

"TSEND" and "TRCV" are connection instructions that only work with TCP-based OUC
connections.

"TUSEND" and "TURCV" are connectionless instructions that only work with UDP-based
OUC connections.

 Note

IOT2000EDU supports up to 4 OUC connections simultaneously. Select the ports used by
OUC carefully, because these ports should not be used by other network programs.

 OUC communication
 11.4 Configuring TSEND, TRCV and TUSEND, TURCV in the TIA Portal

IOT2000EDU
Operating Manual, 03/2018, A5E42342500-AB 87

Ensuring code compatibility for IOT2000EDU and S7-1500
When programming your code, make sure that your program can run on both an
IOT2000EDU and an S7-1500 controller. Note the following information:

 Note

All four modules mentioned above return the code W#16#0000 even when called for the first
time with REQ=1 and successful execution in RET_VAL.

If the program is to be executed on an S7-1500 controller, also ensure that
RET_VAL=W#16#7001 is in your code.
You can find additional information on this in the TIA Portal help under "PLC programming >
Instructions > Instructions (S7-1200, S7-1500) > Asynchronous instructions (S7-1200,
S7-1500) > Difference between synchronous and asynchronous instructions".

 IOT2000EDU
88 Operating Manual, 03/2018, A5E42342500-AB

 Technical specifications A
A.1 Technical specifications

Technical specifications of the IOT2000EDU
The following technical specifications are in effect for the IOT2000EDU:

Article number 6ES7671-0LE00-0YB0
General information

Product type designation IOT2000EDU
Firmware version V1.1

Memory
Work memory

• integrated (for program) 128 kbyte

• integrated (for data) 256 kbyte

CPU-blocks
DB

• Number, max. 200; Limited by RAM for data

• Size, max. 64 kbyte

FB
• Number, max. 20; Limited by RAM for code

• Size, max. 64 kbyte

FC
• Number, max. 20; Limited by RAM for code

• Size, max. 64 kbyte

OB
• Number, max. Limited only by RAM for code

• Number of free cycle OBs 1; OB 1

• Number of time alarm OBs 1; OB 10

• Number of delay alarm OBs 1; OB 20

• Number of cyclic interrupt OBs 9; OB 30-38

• Number of startup OBs 2; OB 100, 102

• Number of asynchronous error OBs 3

• Number of synchronous error OBs 1

 Technical specifications
 A.1 Technical specifications

IOT2000EDU
Operating Manual, 03/2018, A5E42342500-AB 89

Article number 6ES7671-0LE00-0YB0
Nesting depth

• per priority class 16

• additional within an error OB 16

Counters, timers and their retentivity
S7 counter

• Number 2 048

IEC counter
• Number Limited by RAM for data/DB count

S7 times
• Number 2 048

IEC timer
• present Yes

• Type SFB

• Number Limited by RAM for data/DB count

Data areas and their retentivity
Flag

• Number, max. 16 kbyte

• Number of clock memories 8; 8 clock memory bits, grouped into one clock
memory byte

Local data
• preset 32 kbyte

Digital channels
• Inputs 20; Via Arduino UNO Shields

• Outputs 20; Via Arduino UNO Shields; of which 6 PWM
outputs

Analog channels
• Inputs 6; Via Arduino UNO Shields

Clock synchronization
• supported Yes; Synchronized to system clock of

IoT2020/2040
Protocols
Open IE communication

• TCP/IP Yes

– Data length, max. 16 kbyte

• UDP Yes

– Number of connections, max. 4

– Data length, max. 1 472 byte

Technical specifications
A.1 Technical specifications

 IOT2000EDU
90 Operating Manual, 03/2018, A5E42342500-AB

Article number 6ES7671-0LE00-0YB0
Web server

• User-defined websites No

• Number of HTTP clients 2

Communication functions
PG/OP communication Yes

S7 communication
• supported Yes; For engineering, HMI

Test commissioning functions
Status block Yes
Single step Yes
Number of breakpoints 16

Status/control
• Status/control variable Yes

Diagnostic buffer
• present Yes

• Number of entries, max. 120

Hardware requirement
Hardware required IoT2020, IoT2040

Programming
• Nesting levels 8

Programming language
– LAD Yes

– FBD Yes

– STL Yes

– SCL Yes

– GRAPH Yes

IOT2000EDU
Operating Manual, 03/2018, A5E42342500-AB 91

 Additional information B

The following links provide additional information:

● IOT20x0 manual: https://support.industry.siemens.com/cs/document/109741658/simatic-
iot2020-simatic-iot2040?dti=0&lc=en-WW
(https://support.industry.siemens.com/cs/document/109741658/simatic-iot2020-simatic-
iot2040?dti=0&lc=en-WW)

● Commissioning the IOT20x0: https://support.industry.siemens.com/tf/ww/en/posts/setting-
up-the-simatic-iot2000/155642/?page=0&pageSize=10
(https://support.industry.siemens.com/tf/ww/en/posts/setting-up-the-simatic-
iot2000/155642/?page=0&pageSize=10)

● IOT20x0 area in the Siemens Industry Support Forum: http://www.siemens.com/iot2000-
forum (http://www.siemens.com/iot2000-forum)

● IOT2020 information page: https://siemens.com/iot2020 (https://siemens.com/iot2020)

● SD card example image:
https://support.industry.siemens.com/cs/document/109741799/simatic-iot2000-sd-card-
example-image (https://support.industry.siemens.com/cs/document/109741799/simatic-
iot2000-sd-card-example-image?dti=0&lc=en-WW)

● Instructions for creating your own image: https://github.com/siemens/meta-iot2000
(https://github.com/siemens/meta-iot2000)

● Information on Yocto tags:

– EXTRA_IMAGE_FEATURES: http://www.yoctoproject.org/docs/1.8/ref-manual/ref-
manual.html#ref-features-image (http://www.yoctoproject.org/docs/1.8/ref-manual/ref-
manual.html#ref-features-image)

– PACKAGE_CLASS: http://www.yoctoproject.org/docs/1.8/ref-manual/ref-
manual.html#var-PACKAGE_CLASSES (http://www.yoctoproject.org/docs/1.8/ref-
manual/ref-manual.html#var-PACKAGE_CLASSES)

● MRAA library (version 1.6.1): https://github.com/intel-iot-devkit/mraa#installing-on-intel-
32bit-yocto-based-opkg-image (https://github.com/intel-iot-devkit/mraa#installing-on-intel-
32bit-yocto-based-opkg-image)

● Detail information on assignment of the GPIOs:
https://support.industry.siemens.com/tf/WW/en/posts/how-is-the-assignment-of-the-
gpios/155609?page=0&pageSize=10
(https://support.industry.siemens.com/tf/WW/en/posts/how-is-the-assignment-of-the-
gpios/155609?page=0&pageSize=10)

● Information on the SIEMENS IOT2000 IO, Input/Output Module:
https://support.industry.siemens.com/cs/document/109745681/iot2000-io-input-output-
module?dti=0&lc=de-DE
(https://support.industry.siemens.com/cs/document/109745681/iot2000-io-input-output-
module?dti=0&lc=en-US)

 IOT2000EDU
92 Operating Manual, 03/2018, A5E42342500-AB

 Abbreviations C

CPU Central Processing Unit
GPIO General Purpose Input/Output
HSP Hardware Support Package
IOT Internet of Things
IOT2000EDU SIMATIC S7 Software Controller, IOT2000EDU (EDU for education)
Opkg Open PacKaGe management
OS Operating System
PLC Programmable Logic Controller
PWM Pulse Width Modulation
SSH Secure Shell
TIA Totally Integrated Automation

	S7 Software Controller IOT2000EDU
	Legal information
	Table of contents
	1 Guide through this Operating Manual
	2 Safety information
	2.1 Security information
	2.2 Application of the product

	3 Description
	3.1 Overview of functions IOT2000EDU
	3.2 Required components
	3.3 Operating conditions

	4 Preparing the product for first use
	4.1 Selecting the hardware
	4.2 Installing Yocto Linux
	4.2.1 Requirements and settings
	4.2.2 Installation steps

	4.3 Installing IOT2000EDU
	4.3.1 Requirements and settings
	4.3.2 Installing IOT2000EDU
	4.3.3 Checking the installation
	4.3.4 Operating IOT2000EDU
	4.3.5 Installing IOT2000EDU support package in the TIA Portal

	5 Uninstalling IOT2000EDU
	6 Operating the TIA Portal
	6.1 Introduction to the TIA Portal
	6.2 Adding and configuring IOT2000EDU in the TIA Portal
	6.3 IOT2000EDU programming with the TIA Portal
	6.4 Downloading to device
	6.5 Go online
	6.6 Diagnostics events

	7 Configuring and operating shields
	7.1 SIMATIC IOT2000, Input/Output Module
	7.2 Configuring the Arduino shield
	7.2.1 Assigning Address_space
	7.2.2 Assigning a GPIO
	7.2.3 Assigning PWM
	7.2.4 Assigning analog

	7.3 Error messages

	8 Operating IOT2000EDU
	8.1 RUN/STOP/MRES functions via TIA Portal
	8.2 RUN/STOP/MRES functions via command line
	8.3 RUN/STOP/MRES via Web server

	9 Web server
	9.1 Introduction
	9.2 Requirements
	9.3 Operating the Web server with Linux commands
	9.4 Accessing Web server
	9.5 Web server pages
	9.5.1 Introduction
	9.5.2 Home page
	9.5.3 Identification
	9.5.4 Diagnostic buffer

	10 Function library
	10.1 Overview of the CPU function library
	10.2 Creating a user-defined SO file
	10.2.1 Programming the "Execute" function
	10.2.2 Programming additional functions
	10.2.3 Data Access Helper classes
	10.2.4 Data types

	10.3 Creating function library programs with Eclipse
	10.3.1 Alternative development environments
	10.3.2 SDK installation in Windows
	10.3.3 Compile the SO file with the example project
	10.3.4 Cross compiling with the IOT2000 SDK installation
	10.3.5 Loading an SO file to IOT20X0

	10.4 Preparing the TIA Portal project for the application
	10.4.1 Reference of the IOT2000EDU function library Instructions
	10.4.1.1 CREA_COM (SFB65001)
	10.4.1.2 EXEC_COM (SFB65002)

	10.5 Creating function library programs with Matlab Simulink
	10.5.1 Requirements
	10.5.2 Creating a Simulink model
	10.5.3 Description of Simulink parameters
	10.5.4 Integrating the Simulink model into Eclipse
	10.5.5 Preparing TIA Portal for the Simulink model
	10.5.6 Data type conversion

	11 OUC communication
	11.1 Connection establishment
	11.2 Configuring TCON and TDISCON in the TIA Portal
	11.3 Data exchange
	11.4 Configuring TSEND, TRCV and TUSEND, TURCV in the TIA Portal
	A Technical specifications

	A.1 Technical specifications
	B Additional information
	C Abbreviations

